Skip to main content
U.S. flag

An official website of the United States government

Nonlinear Scale Interactions and Energy Pathways in the Ocean

Presentation Date
Tuesday, May 13, 2014 at 5:00pm
Authors

Author

Abstract

Large-scale currents and eddies pervade the ocean and play a prime role in the general circulation and climate. The coupling between scales ranging from O(10^4) km down to O(1) mm presents a major difficulty in understanding, modeling, and predicting oceanic circulation and mixing, where the energy budget is uncertain within a factor possibly as large as ten. Identifying the energy sources and sinks at various scales can reduce such uncertainty and yield insight into new parameterizations. To this end, we refine a novel coarse-graining framework to directly analyze the coupling between scales. The approach is very general, allows for probing the dynamics simultaneously in scale and in space, and is not restricted by usual assumptions of homogeneity or isotropy. We apply these tools to study the energy pathways from eddy-resolving simulations using LANL's Parallel Ocean Program (POP). We examine the extent to which the traditional paradigm for such pathways is valid at various locations such as in western boundary currents, near the equator, and in the deep ocean. We investigate the contribution of various nonlinear mechanisms to the transfer of energy across scales such as baroclinic and barotropic instabilities.

Category
Day 3: From Field to Model, From Process Resolution to Parameterization
Funding Program Area(s)