Skip to main content
U.S. flag

An official website of the United States government

Moist Thermodynamics of Tropical Cyclone Formation and Intensification in High-Resolution Climate Models

Presentation Date
Monday, December 11, 2017 at 8:45am
Location
New Orleans Ernest N. Morial Convention Center - E3
Authors

Author

Abstract

In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models.

We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).

Funding Program Area(s)