Publication Date
27 April 2021
Uncertainties in Atmospheric River Lifecycles by Detection Algorithms: Climatology and Variability
Atmospheric rivers (ARs) are long and narrow filaments of vapor transport that are responsible for most poleward moisture transport outside of the tropics. Many AR detection algorithms have been developed to automatically identify ARs in climate data. The diversity of these algorithms has introduced appreciable uncertainties in quantitative measures of AR properties and thereby impedes the construction of a unified and internally consistent climatology of ARs. This paper compares nine global AR detection algorithms from the perspective of AR lifecycles following the propagation of ARs from origin to termination in the MERRA2 reanalysis over the period 1980–2017. Uncertainties in AR lifecycle characteristics, including event number, lifetime, intensity, and frequency distribution are discussed. Notably, the number of AR events per year in the Northern Hemisphere can vary by a factor of 5 with different algorithms. Although all algorithms show that the maximum AR origin (termination) frequency is located over the western (eastern) portion of ocean basins, significant disagreements appear in regional distribution. Spreads are large in AR lifetime and intensity. The number of landfalling AR events produced by the algorithms can vary from 16 to 80 events per year, although the agreement improves for stronger ARs. By examining the ARs' connections with the Madden-Julian Oscillation and El Niño Southern Oscillation, we find that the overall responses of ARs (such as changes in AR frequency, origin, and landfall activity) to climate variability are consistent among algorithms.
“Uncertainties In Atmospheric River Lifecycles By Detection Algorithms: Climatology And Variability”. 2021. Journal Of Geophysical Research: Atmospheres 126. doi:10.1029/2020jd033711.
Funding Program Area(s)