Skip to main content
U.S. flag

An official website of the United States government

Publication Date
1 December 2021

Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions

Authors

Author

Wetland methane (CH4) emissions (FCH4) are important in global carbon budgets and climate change assessments. Currently, FCH4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent FCH4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that FCH4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between FCH4 and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between FCH4 and temperature, suggesting larger FCH4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.

“Substantial Hysteresis In Emergent Temperature Sensitivity Of Global Wetland Ch4 Emissions”. 2021. Nature Communications 12. doi:10.1038/s41467-021-22452-1.
Funding Program Area(s)