The Role of Bjerknes and Shortwave Feedbacks in the Tropical Pacific SST Response to Global Warming
The evolution of tropical sea surface temperatures (SSTs) in response to greenhouse warming is of great societal and scientific interest. Most state‐of‐the‐art climate models predict a mean “El Niño‐like” warming pattern by century‐end, characterized by greater warming over the Pacific cold tongue compared to the western warm pool. However, it is unclear which proposed mechanism dominates in this response. Here, we present partially coupled abrupt CO2 doubling experiments in which surface wind stress and shortwave heating are overridden to values from a control simulation. Contrary to previous studies, we find that experiments with overriding of surface wind stress exhibit only 58% of the full reduction in east‐west SST contrast. When both surface wind stress and shortwave flux are overridden, only 34% of the full reduction remains, controlled by spatially‐varying evaporative cooling. These results underscore the importance of Bjerknes and shortwave feedbacks in the tropical Pacific SST response to global warming.