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Abstract: Addressing climate change is ultimately a challenge of risk management, which requires an 
understanding of the likelihood of potential outcomes. We provide integrated, probabilistic socio-economic 
and climate projections obtained using updated estimates of probability distributions for key parameters in 
both the human and Earth system components of the MIT Integrated Global System Model (IGSM). The 
Reference scenario results in median end-of-century warming of 3.5°C and a 90% range of 2.8–4.3°C, which 
is lower than the median of 5.7°C from a prior study using a previous version of the IGSM. About 0.5°C of 
the difference is due to updated estimates in the human system and the rest of the difference is explained by 
changes in Earth system estimates. Our results show that climate policy lowers the upper tail of temperature 
change distributions more than the median, and that even relatively modest policies can significantly 
reduce the likelihood of high global temperature outcomes. Human system uncertainties contribute more 
to uncertainty in projected CO2 concentrations and total radiative forcing, while Earth system uncertainties 
have the greatest influence on temperature and precipitation. Including additional uncertain inputs does not 
automatically increase the outcome range because uncertainties can offset one another. Results also show 
how policy costs can vary greatly among regions.  As we improve understanding of underlying technology 
and economic factors as well as Earth system response to human forcing, further updating of these estimates 
of uncertainty can make an important contribution to decision-making about mitigation and adaptation.
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1.	 Introduction
To manage the risks of climate change, information on 
the likelihood of various outcomes is needed. Many cou-
pled human-Earth system models have been developed 
to explore potential future energy, emissions, climate and 
other outcomes of interest. However, uncertainty in these 
models is often addressed through sensitivity analysis, 
scenarios and model comparisons. In particular, the In-
tergovernmental Panel on Climate Change (IPCC) and the 
broader research community have focused on a defined 
set of Shared Socioeconomic Pathways (SSPs) and Rep-
resentative Concentration Pathways (RCPs). Uncertainty 
in human and Earth system outputs is often represented 
as the ranges resulting from model comparisons focused 
on SSPs and RCPs (e.g. IPCC, 2014; Riahi et al., 2017; 
Rogelj et al., 2018; WCRP, 2011; Eyring et al., 2016). While 
these exercises can provide useful insights, they limit the 
uncertainty space explored (e.g. by focusing on a limited 
set of defined socioeconomic pathways) and provide no 
quantitative probabilistic interpretation. This leaves deci-
sion-makers and other users of these scenarios to make their 
own judgments about likelihoods, and those judgements 
vary greatly based on the individual’s interest and level of 
understanding. There are growing calls for more formal 
probabilistic, risk-based approaches to inform discussions 
about mitigation and adaptation (e.g. CBO, 2005; Hausfa-
ther and Peters, 2020).
Formal uncertainty studies of global economic develop-
ment, emissions and climate in the literature are now quite 
dated, and typically focus on a limited set of uncertainties 
(e.g Reilly, et al. 1987; Peck and Teisberg, 1993; Nord-
haus and Popp, 1997; Pizer, 1999; Webster, et al., 2002; 
Baker, 2005; Hope, 2006; Nordhaus, 2008; Sokolov, et al., 
2009;Webster et al, 2012, Anthoff and Tol, 2013; Lemoin 
and McJeon, 2013). The economic outlook, technology 
costs, and estimates of Earth system response have changed 
considerably over the past decade with new data, analysis 
and evidence, making it useful to revisit these uncertain-
ties. Many authors continue to use the IPCC 8.5 W/m2 
scenario (RCP8.5) as a reference “no policy” baseline, but 
given slower economic growth, falling costs of low-carbon 
energy options and government interventions worldwide 
directed at expanding the role of renewables, many now 
believe the RCP8.5 “no policy” scenario to be highly un-
likely (Mager et al., 2017; Hausfather and Peters, 2020; 
Grant et al., 2020; Morris et al., 2020). Gillingham, et al., 
(2018) is a more up-to-date multi-model uncertainty study, 
but it focuses on only two uncertain socio-economic vari-
ables—population and economic growth. 
This study takes a probabilistic ensemble approach to rep-
resenting a comprehensive set of both socio-economic and 
climate uncertainties. Our goal is to develop updated prob-
ability distributions of human and Earth system outcomes 

that can serve as a basis for risk-based decision-making. 
This study advances an approach used by Webster, et al. 
(2002; 2003; 2012) and Sokolov, et al. (2009), employing 
an updated and improved version of the MIT Integrated 
Global System Model (IGSM) and a significant reassessment 
of uncertainty in input parameters. The resulting integrat-
ed, probabilistic socio-economic and climate projections 
provide insight into the probability of outcomes of interest, 
including emissions, CO2 concentrations, temperature, pre-
cipitation, Gross Domestic Product (GDP) and energy use.
In this paper, Section 2 describes the model, method and 
scenarios employed, Section 3 presents the resulting distribu-
tions for key outcomes and Section 4 provides conclusions.

2.	Method

2.1	Model
Coupled human-Earth system models allow for consider-
ation of both socio-economic and climate uncertainties. 
Here we use the MIT IGSM framework, which links the 
Economic Projection and Policy Analysis (EPPA) model 
to the MIT Earth System Model (MESM). EPPA is a re-
cursive-dynamic multi-sector, multi-region computable 
general equilibrium (CGE) model of the world economy 
(Chen et al., 2016; Paltsev et al., 2005). It is designed to 
develop projections of economic growth, energy tran-
sitions and anthropogenic emissions of greenhouse gas 
and air pollutants. The model projects economic variables 
(GDP, energy use, sectoral output, consumption, prices, 
etc.) and emissions of long-lived greenhouse gases (CO2, 
CH4, N2O, HFCs, PFCs and SF6) and short-lived air pol-
lutants (CO, volatile organic compounds (VOCs), NOx, 
SO2, NH3, and black carbon and organic carbon aerosols) 
from combustion of carbon-based fuels, industrial pro-
cesses, waste handling, agricultural activities and land use 
change. MESM is an Earth system model of intermediate 
complexity, modeling the Earth’s physical, chemical and 
biological systems to project environmental conditions that 
result from human activity. MESM is able to project the full 
spectrum of climate-relevant conditions across the Earth 
system, including atmospheric concentrations of green-
house gases and aerosols, temperature, precipitation, ice 
and snow extent, sea level, ocean acidity and temperature 
among other variables (Sokolov, et al., 2018). By linking 
these models, the IGSM also allows for the development of 
emissions pathways consistent with different 21st century 
temperature outcomes.

2.2	Monte Carlo Simulation
Following the approach used in Webster et al. (2012; 2003) 
and Sokolov et al. (2009), we employ Monte Carlo uncer-
tainty analysis. The basic steps are: (1) identify uncertain 
input parameters and develop probability distributions 
for them, (2) sample from the distributions to construct 
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multiple sets of parameter values, and (3) simulate large 
ensembles of model runs using the sampled parameter 
values. The distribution of model outcomes from the en-
semble of simulations provides estimates of future states 
and their uncertainty, conditional on the model structure, 
the distributions of uncertain input parameters, and the 
assumed scenario settings. Figure 1 depicts this approach 
for representing uncertainty in a coupled human-Earth 
system model (the MIT IGSM), creating probabilistic, in-
ternally consistent, integrated socio-economic and climate 
projections. In this particular approach, climatic and other 
environmental feedbacks on the economic system that would 
result from changes in the Earth system are not included.
The development of probability distributions for socio-
economic parameters is described in Morris et al., (2021) 
and for Earth system parameters in Libardoni et al., (2019, 
2018a,b). Estimated distributions for socioeconomic pa-
rameters were based on statistical estimates using historical 
data where possible (e.g. GDP growth, autonomous energy 
efficiency improvement, rate of technology penetration), 
published estimates of uncertainty (e.g. population, fossil 
resource availability), literature results and expert judge-
ment (e.g. future technology costs, elasticities of substitu-
tion, urban pollutant initial inventories and trends, capital 
vintaging). Probability distributions are constructed for 
each socio-economic parameter, some by region or sector, 
creating a total of over 150 distributions. For a subset of 
related parameters, correlation structures are also imposed. 
Uncertain Earth system parameters were estimated us-
ing an optimal fingerprint approach (i.e. Libardoni et al., 
2019, 2018a,b). This method uses historical data on sur-
face climate, ocean heat content, and concentrations of 
greenhouse-relevant gases and aerosols to estimate a joint 
distribution of parameters representing climate sensitivity, 

ocean heat uptake and aerosol radiative forcing. These 
estimates are based on observations through 2010, whereas 
previous estimates (Forest et al., 2008) used data only up to 
1995. We also account for uncertainty in the carbon uptake 
by the ocean and terrestrial ecosystems (Sokolov et al., 
2018). A summary of the probability distributions for all 
uncertain parameters, both socio-economic and Earth 
system, is provided in Appendix A. 
To reduce computational requirements when conducting 
Monte Carlo analysis with the relatively complex IGSM, we 
employ Latin Hypercube sampling (LHS) (McKay et al., 
1979; Iman and Helton, 1988). LHS divides the distribu-
tion for each variable into equal probability segments. 
The mid-point values for each segment of each variable 
are chosen randomly, without replacement. Each random 
selection across all variables creates one ensemble mem-
ber. The process generates an ensemble size equal to the 
number of probability segments. This sampling strategy 
assures that every equally likely segment of the distribution, 
including segments in the distribution tails, is sampled 
exactly once. We use 400-member ensembles, shown to 
adequately approximate the limiting distribution when 
using LHS, whereas pure random sampling often requires 
thousands or tens of thousands of samples to achieve similar 
accuracy (Webster et al, 2012). 
The same set of 400 samples is used for a reference scenario 
and a set of climate policy scenarios (described below). 
Pairwise comparisons of results are made across scenarios 
with identical input values for each ensemble member 
pair, with the only difference between the two being the 
introduction of a policy constraint. This procedure is de-
signed to estimate policy costs, defined as the difference 
between simulated macroeconomic welfare in a policy case 
and that in the reference case for each ensemble member.

Figure 1. Approach for representing uncertainty in a coupled human-Earth system model (MIT IGSM) and creating probabilistic, 
internally consistent, integrated socio-economic and climate projections.
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2.3	Scenarios
Climate policy is treated as a deep uncertainty, explored 
through a set of ensemble scenarios, rather than attempting 
to assign a subjective probability distribution to policy 
measures . The ensemble scenarios include a reference case, 
a case extrapolating Nationally Determined Contributions 
(NDC) targets of the Paris Agreement, and policy cases 
that achieve long-term temperature stabilization targets of 
2°C and 1.5°C (Table 1). Morris et al. (2021) explore the 
same set of scenarios (labeled by their median temperature 
outcomes), focusing on technology and socio-economic 
outcomes. The Reference case does not include the miti-
gation pledges made by the countries in their submissions 
under the Paris Agreement, but it does include policies 
targeting an expansion of renewables in power generation 
consistent with IEA (2017). Climate and energy policies have 
also been responsible for reducing the costs of low-carbon 
technologies and otherwise shaping energy consumption 
patterns through building standards and codes, appliance 
and vehicle efficiency and other policies. While not explic-
itly represented, the effects of these efforts are reflected in 
lower renewable technology costs and a slowing rate of 
emissions growth over the last decade. 
The ParisForever scenario assumes the NDCs submitted 
under the Paris Agreement are met by all countries by 2030 
and retained thereafter (Reilly et al., 2018). For countries 
with absolute NDC targets (e.g. emission reductions rela-
tive to a historic year), those targets are retained through 
the horizon of the simulation, keeping emissions flat after 
2030. Countries with NDC targets that are relative to busi-
ness-as-usual (BAU) emissions, or are in terms of emissions 
intensity, retain those targets through the horizon of the 
simulation, but since BAU emissions and GDP vary, the 
targets result in varying emissions for those regions (and 
the world total) across ensemble members. 
The Paris2C and Paris1.5C scenarios are designed to achieve 
the long-term temperature stabilization targets of the Paris 
Agreement. The Paris Agreement has the long-term goal 

of “holding the increase in the global average temperature 
to well below 2°C above pre-industrial levels and pursuing 
efforts to limit the temperature increase to 1.5°C above 
pre-industrial levels (UNFCCC, 2015).” We use the period 
1861–1880 to determine preindustrial temperature. We 
interpret “well below” as targeting an emissions level so 
that the global mean surface temperature is likely to remain 
below 2°C. In IPCC terminology, “likely” is quantified as a 
2/3 (66%) chance of occurring (Mastrandrea, et al 2010). 
We interpret the 1.5°C aim as the median result, achieving 
it with a 50% likelihood. For both scenarios, we assume all 
countries meet their NDCs by 2030, after which a global 
price, designed to achieve the long-term targets, is applied 
to all greenhouse gases, sectors and regions. Under median 
values of socio-economic parameters in the EPPA model 
and our estimates of climate uncertainty, the global emis-
sions trajectories result in a 66% likelihood of remaining 
below 2°C (Paris2C) above pre-industrial levels or a 50% 
likelihood of remaining below 1.5°C (Paris1.5C) above 
pre-industrial levels.1 The resulting regional emissions 
trajectories are then implemented as emissions caps with 
trading among sectors, regions and greenhouse gases, and 

1	  There are many alternative trajectories that could also achieve the 
same outcomes (66% chance of 2°C or 50% chance of 1.5°C). For the 
particular paths used here, we first found an initial GHG emissions 
price that, when beginning in 2035 and rising at 4% per year under 
median values of socio-economic parameters, would achieve the 
temperature target with the specified probability given the uncer-
tainty in our climate parameters. Such an optimized global emissions 
price policy tends to have a dramatic reduction in emissions in early 
years of the policy. For the Paris2C scenario, we smoothed the global 
emissions trajectory in early years, while maintaining the same cumu-
lative GHG budget consistent with the temperature target, and then 
implemented that path as an emissions cap, requiring each ensemble 
member to achieve the same global emissions trajectory. For the 
Paris1.5C scenario, there is not room in the GHG budget to smooth 
the early years of the emissions trajectory without employing negative 
emissions in later years, which we do not include. So for Paris1.5C, 
the emissions path resulting from the global emissions price policy is 
implemented as an emissions cap for the ensemble. 

Table 1. Scenarios used for ensembles

Scenario Description
Median Global 
Temperature 
Outcome a

Reference No Paris Agreement targets, but expansion of renewables policies 3.5°C

ParisForever Paris Nationally Determined Contribution (NDC) targets are met by all countries by 
2030 and retained thereafter

3.1°C

Paris2C Paris NDC targets are met by all countries by 2030, after which there is an emissions 
cap, implemented with a global emissions price, ensuring 2100 global surface mean 
temperature does not exceed 2°C above pre-industrial levels with a 66% probability

1.9°C

Paris1.5C Paris NDC targets are met by all countries by 2030, after which there is an emissions 
cap, implemented with a global emissions price, ensuring 2100 global surface mean 
temperature does not exceed 1.5°C above pre-industrial levels with a 50% probability

1.5°C

a Average global surface air temperature in 2091–2100 relative to 1861–1880.
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therefore a global emissions price. The emissions caps are 
binding upper limits on emissions, and assure that the 
global emissions path determined under median values 
of socioeconomic inputs are also met when inputs are un-
certain. Under the emissions caps with median parameter 
settings, there is no emissions trading among regions, as 
the marginal cost of abatement across regions is already 
equalized. However, trading will occur as socio-economic 
uncertainty within the ensembles is sampled. 

3.	Results 

3.1	Emissions
The Reference scenario has the greatest uncertainty, with 
GHG emissions in 2100 ranging from about 76 to 118 
gigatonnes of CO2-equivalent (Gt CO2eq) in 2100 (5th to 
95th percentile), with a median of 96 Gt (Figure 2). Com-
pared to previous analyses (e.g. Webster et al., 2012), this 
range is narrower. This difference is driven by updates to 
the input probability distributions as well as updates to the 
EPPA model. Changes relative to the version used in Web-
ster et al. (2012) include slower regional economic growth, 
lower costs of low-carbon energy options, government 
interventions worldwide directed at expanding the role 
of renewables, and a myriad of energy policies implicitly 
included through calibrating the EPPA model’s historical 
emissions path to historical data. These revisions all lower 
the high end of emissions. In particular, the GDP growth 
prospects for China have slowed considerably, resulting in 

lower emissions. China is the largest CO2 emitting economy 
in the world and so this change alone significantly reduces 
the upper bound of global emissions. The Reference sce-
nario also now includes expansion targets for renewables 
consistent with projections from the International Energy 
Agency (IEA, 2017), which also reduces the upper bound 
of global emissions. Further, the emissions variability in 
some countries/regions tend to offset each other, lowering 
variability at the global level. 
The policy scenarios reduce or eliminate emissions uncer-
tainty. The 90th percentile range for ParisForever emissions 
is 64–91 Gt CO2eq, with a median of 77 Gt. As previously 
noted, NDC targets specified as reductions from reference 
or specified as emissions intensity goals leave room for 
uncertainty in emissions projections. In 2100, median 
emissions in ParisForever are about 19% lower than median 
2100 emissions in Reference. Year 2100 emissions in Paris2C 
and Paris1.5C are 13 Gt and 9 Gt, respectively, which is 
87% and 91% below median 2100 Reference emissions. In 
principle, the emissions constraints could be non-binding 
leading to emissions uncertainty (with some ensemble 
members that might have emissions below the constraint). 
In practice, however, the constraints are binding in all 
cases, so there is no uncertainty in global emissions in the 
Paris2C and Paris1.5C policy ensembles. Ensemble mem-
bers do, however, differ in terms of regional and sectoral 
emissions and emissions of individual greenhouse gases 
For cumulative emissions over the period of 2025–2100, 
the ParisForever median is 18% lower than the Reference 

Figure 2. Global greenhouse gas emissions over time for each ensemble scenario. Shaded areas represent 90% probability bounds. 
Lines are the medians.
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median, Paris2C is 65% lower, and Paris1.5C is 76% lower. 
See Appendix B for a comparision of emissions results from 
these scenarios to those from the IPCC Fifth Assessment 
Report (IPCC, 2014). 
Many of the models and scenarios used by the IPCC (2018; 
2014) employ negative emission technologies, such as bio-
mass electricity with carbon capture and storage (BECCS) 
or direct air capture (DAC). There are many questions about 
the cost of technologies, their ability to operate at scale, 
sustainably, and and in a way that makes them publicly ac-
ceptable. Because the economics of these advanced options 
are so uncertain, as is the scale of use even if economic and 
technological challenges are overcome, we did not include 
them in any of our ensembles. As a result, the Paris2C 
and Paris1.5C targets are met without negative emission 
technologies. In other work, that includes BECCS in the 
MIT EPPA model, the technology dominates once it is 
competitive, effectively capping the carbon price, reducing 
policy costs, and allowing fossil energy use to continue 
(Fajardy et al, 2020). The ensembles also do not consider 
mitigation through changing land use, such as through 
afforestation, to achieve emission targets. These, too, would 
lower the economic cost and carbon price and provide more 
headroom for other GHG emissions (Reilly et al., 2018).
There is a presumption in many policy circles that there is 
a need to get to net zero emissions in this century, possibly 
as early as 2050, and this then requires a negative emission 
technology in order to offset hard-to-abate emissions, such 
as methane from rice and ruminants, and nitrous oxide from 
soil management. However, all of our ensemble members 
meet the emissions constraints imposed in the Paris2C 
and Paris1.5C ensembles without negative emissions or 
net zero emissions. As emphasized in the IPCC, at least as 
a first approximation, it is the cumulative budget over the 
century that matters for temperature outcomes (see, e.g. 
Rogelj et al. (2019)). Net zero or negative emissions in the 
latter half of the century would provide more near-term 
headroom, allowing for a more gradual transition from the 
current fossil fuel heavy energy system, and lower near-term 
costs. In particular, to meet the Paris1.5C emissions target 
under our formulation (without negative emissions options) 
requires an almost 60% drop in emissions between 2030 
and 2035, which results in very high costs, even in early 
years as much more abatement is needed early to balance 
out emissions in the 2nd half of the century.
The carbon budgets for the Paris2C and Paris1.5C scenarios 
are somewhat larger than estimates for these temperature 
targets presented in the IPCC Special 1.5°C Report (e.g., 
IPCC, 2018; Rogelj et al., 2018). For the set of climate 
parameters used in this study, the median transient cli-
mate response to (cumulative carbon) emissions (TCRE) 
obtained in our ensembles of MESM simulations is nearly 
identical to the value used in the IPCC Special 1.5°C Report 

(IPCC, 2018), but the 90% probability range of the TCRE 
is narrower. As a result, the CO2-only carbon budget for 
achieving a given target with 50% probability as simulated 
by MESM will be similar to that shown by IPCC Special 
1.5°C Report (Forster et al., 2018), while the allowable 
budget for the 33%/66% probability will be lower/higher. 
However, the main reason for the difference in carbon 
budget is the smaller temperature change associated with 
non-CO2 forcing. Compared with most IPCC scenarios, 
we have lower non-CO2 GHG emissions allowing for more 
CO2 emissions, and somewhat higher SO2 emissions re-
sulting in greater negative aerosol forcing. Our carbon 
emissions (relative to 2017) are near the high end of the 
range reported by Rogelj et al. (2019).

Although all ensemble members in the Paris2C and Par-
is1.5C scenarios must meet the same global emissions 
trajectory (see Figure 2), there is uncertainty about how 
those emissions are distributed across regions and sectors 
since emissions trading is allowed. The regional and sectoral 
distributions depend on the cost of abatement opportunities, 
which change with different values of input parameters. 
To demonstrate this feature of the results, Figures 3 and 4 
show the uncertainty in emissions for a set of regions and 
sectors in 2030, 2050 and 2100 in the Paris2C scenario, 
along with 2015 emissions as a point of reference. Uncer-
tainty in these figures is represented as box plots: the boxes 
are the interquartile range (25th-75th percentile) and the 
whiskers extend to 1.5 times the interquartile range. The 
greatest variance in regional emissions is in China and the 
“Rest of World” (all other regions combined). Uncertainty 
in emissions in 2030 exists for regions with Paris NDC 
targets related to BAU emissions or emissions intensity. 
Beyond 2030, all regions must reduce their emissions, 
with each region’s ultimate level of reductions depending 
on abatement costs in the region. 

The greatest variance in sectoral emissions is in electricity 
and industry. The sectoral results also suggest that there 
are limited abatement opportunities in the agriculture, 
commercial and residential, and industry sectors. This 
partly reflects real decarbonization challenges in those 
sectors. However, it also reflects the model structure—if 
additional low-carbon technological options for those sec-
tors were represented in the model, those sectors likely 
would achieve further emissions reductions, depending 
on the cost of the options and the stringency of the policy. 
This analysis thus helps to identify areas where the model 
would benefit from additional research and model devel-
opment related to non-energy sector mitigation options. 
Representation of additional options would also impact 
policy cost uncertainty. 
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Figure 3. Boxplots of regional GHG emissions in 2030, 2050 and 2100 in selected regions. The 2015 emissions are shown in black 
as a point of reference.

Figure 4. Boxplots of global sectoral GHG emissions in 2030, 2050 and 2100. The 2015 emissions are shown in black as a point of 
reference.
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3.2	Atmospheric CO2 Concentrations 

The Paris2C and Paris1.5C scenarios have a smaller 90% 
range of CO2 concentrations over the entire 2020 to 2100 
period than the Reference and ParisForever scenarios due 
to their fixed emissions constraints (Figure 5a). The driver 
of uncertainty in CO2 concentrations under those scenarios 
is the rate of carbon uptake by the ocean and terrestrial 
ecosystems. When emissions are also uncertain, the range of 
concentrations is wider, with the Reference scenario having 
the widest range. Moving from Reference to ParisForever to 

Paris2C, the distributions of end-of-century concentrations 
become increasingly asymmetric, with policy trimming the 
upper tail more than the lower tail (Figure 5b). Paris1.5C 
is slightly less skewed than Paris2C. The 90% bounds are 
678–845 ppm for Reference, 618–727 ppm for ParisForever, 
451–500 pmm for Paris2C and 415–453 ppm for Paris1.5C. 

3.3	Radiative Forcing

By the end of the century, total radiative forcing, which is 
the sum of the effects of all long-lived greenhouse gases 

Figure 5. (a) CO2 Concentrations over time for each ensemble scenario (shaded areas represent 90% probability bounds. Lines are 
the median). (b) Frequency distributions of CO2 Concentrations in 2091–2100. 
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plus tropospheric ozone and aerosols, has a 90% range of 
6.7–8.3 W/m2 for Reference, 6.0–7.3 W/m2 for ParisForever, 
3.3–3.8 W/m2 for Paris2C and 2.6–3.1 W/m2 for Paris1.5C 
(Figure 6a). The uncertainty in radiative forcing is driven 
by: (1) varying concentrations due to Earth system feedback 
(as shown above), and (2) uncertainty in the strength of 
sulfates aerosol forcing. Similar to the CO2 concentrations, 
with policy the upper tails of the distributions are trimmed 
more than the lower tails (Figure 6b). 

3.4	Temperature
At the end of the century, the median 2091–2100 tempera-
ture change relative to pre-industrial levels (1861–1880) 
is 3.5°C for Reference, 3.1°C for ParisForever, 1.9°C for 
Paris2C and 1.5°C for Paris1.5C (Figure 7). The 90% range 
is 2.8–4.3°C for Reference, 2.4–3.8°C for ParisForever, 
1.5–2.3°C for Paris2C and 1.2–1.9°C for Paris1.5C. 

The surface warming projected in this study for the Reference 
emissions scenario is significantly lower than estimates 

Figure 6. (a) Total radiative forcing over time for each ensemble scenario relative to 1861–1880 (shaded areas represent 90% 
probability bounds. Lines are the medians). (b) Frequency distributions of total radiative forcing in 2091–2100 relative to 1861–1880 
(dashed lines are the medians). 
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obtained in previous studies using earlier versions of the 
MIT IGSM (Sokolov et al, 2009: Webster et al, 2012). In 
these earlier studies, ensemble simulations with reference 
emissions from Webster et al., (2008) and climate parameter 
distributions from Forest et al., (2008) showed median 
warmings of 5.7°C, relative to the 1861–1880 mean. En-
semble simulations with the new climate parameter distri-
butions and MESM version used in this study and the old 
reference emissions from Webster et al., (2008) produced 

median warming of 4.0°C relative to the 1861–1880 mean. 
This indicates that of the difference in reference median 
surface warming results between this study (3.5°C) and 
the previous studies (5.7°C), 0.5°C can be explained by the 
difference in anthropogenic emissions, and the remaining 
difference is due to differences in the climate system re-
sponse to emissions. Sokolov et al., (2009) also reported 
a strong dependency of the projected warming on the 
climate parameter assumptions. Namely, simulations with 

Figure 7. (a) Global average surface air temperature over time for each ensemble scenario relative to 1861–1880 (shaded areas 
represent 90% probability bounds. Lines are the median). (b) Frequency distributions of global average surface air temperature in 
2091–2100 relative to 1861–1880 (dashed lines are the medians).
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an alternative distribution of climate parameters, calculated 
using different data sets for changes in deep-ocean heat 
content, produced median surface warming of only about 
4.5°C relative to the 1861–1880 mean. For additional de-
tails on the difference between this study and the previous 
studies, see Appendix C. 
Importantly, climate policy lowers the upper tail of the tem-
perature change distributions more than the median. For 
example, comparing Paris2C to the Reference, the median 
temperature is reduced by 1.6°C (from 3.5°C to 1.9°C) and 
the 95th percentile is reduced by 2°C (from 4.3°C to 2.3°C). 
This illustrates that one of the greatest roles of climate policy 
is to lower (or eliminate) the likelihood of extreme tem-
perature outcomes, particularly when policy is formulated 
as an absolute cap on emissions in many regions. This is 
highlighted in Table 2, which shows how the percentage 
of runs exceeding given temperature levels varies across 
the ensemble scenarios. Results indicate that even relatively 
modest policies can significantly reduce the likelihood of 
high temperature outcomes. For example, the ParisForever 
scenario has modest emissions reductions relative to the 
Reference, yet greatly reduces the chance of temperature 
changes above 4°C (decreasing it from 15% to <0.25%). The 
Paris2C scenario essentially bounds temperature to 2.5°C, 
with less than 0.25% of runs exceeding that level. The Par-
is1.5C scenario essentially bounds temperature to 2°C, with 
less than 0.25% of runs exceeding that level. Also important 
are the lower tails of the temperature change distributions. 
As seen in Figure 7b, under Reference and ParisForever, the 
2°C temperature target is essentially out of reach. 
Another important insight from these results is that, due 
to uncertainties in the climate system, a given emissions 
constraint cannot guarantee that a particular temperature 
target is met. Here we have designed emissions trajectories 
(Paris2C and Paris1.5C) to achieve a particular temperature 
target (2°C or 1.5°C) with a given probability (66% or 50%), 

accounting for our estimated climate system uncertainty, 
meaning there is still significant probability (33%-50%) 
that the temperature targets will be exceeded. Looked at in 
another way, depending on how Earth system uncertainties 
are resolved, we may find that we can allow somewhat 
higher emissions (with low climate response) or will need 
to cut emissions more deeply (with high climate response) 
if indeed we want to remain below a given temperature 
target. One implication of these results is that emissions 
targets intended to achieve specific temperature goals would 
need to be adjusted over time as the uncertainty in the 
climate system is resolved.

To communicate these results to a broader audience, we 
have found it useful to convert the distributions into rou-
lette wheels characterizing the chance of a result within 
various temperature intervals (e.g. Prinn, 2012; Figure 8). 
We have called these “Greenhouse Gamble Wheels.” Any 
of the results can be represented in such a “wheels” format, 
and further work can downscale global into regionalized 
results using hybrid methods (e.g. Schlosser et al. 2020, 
Schlosser and Strzepek 2015, Schlosser et al., 2012).

3.5	Precipitation
By the end of the century, global precipitation increases by 
0.15–0.28 mm/day (90% range) for Reference, 0.13–0.24 
mm/day for ParisForever, 0.10–0.16 mm/day for Paris2C 
and 0.08–0.13 mm/day for Paris1.5C (Figure 9). At a global 
scale, the uncertainty in precipitation change can be directly 
associated to the uncertainty in average surface-air tempera-
ture change. Lower surface-air temperatures have a direct 
impact on potential evapotranspiration (from the ocean and 
land surfaces). Thus, at a global scale, reducing near-surface 
warming results in smaller increases in evapotranspiration 
and therefore weaker support for precipitation increases. 
As with temperature, climate policy lowers the upper tail 
of the precipitation distributions more than the median.

Table 2. Percent of ensemble runs exceeding a given temperature. 

Temperature (°C)

% of Runs Exceeding Temperature

Reference Paris Forever Paris2C Paris1.5C

1.5 100% 100% 95% 50%

2 100% 100% 33% <0.25%

2.5 99% 94% <0.25% ...

3 86% 59% … …

3.5 50% 15% … …

4 14% <0.25% … …

4.5 1% … … …

Note: As each ensemble included 400 runs, the lowest percentage of runs resolved is 0.25% (1 out of 400). If none of the runs in the 
ensemble meet a criteria, we assume the percentage to be <0.25% rather than 0% as there is still a chance that the tail outcomes 
could extend beyond the values produced here if more than 400 ensemble members were used. 
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Figure 8. Greenhouse Gamble Wheels showing the distributions of temperature results under each ensemble scenario: (a) Reference 
(labeled on wheel as “No Paris Accord”), (b) ParisForever (labeled on wheel as “Paris Accord”), (c) Paris2C (labeled on wheel as “2°C 
Policy”), and (d) Paris1.5C (labeled on wheel as “1.5°C Policy”). 
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3.6	Contributions to Overall Uncertainty in 
Climate Outcomes

The uncertainty in climate outcomes presented above for 
Reference and ParisForever are driven by both emissions 
and climate uncertainty. To explore the relative contribution 
of each, Figure 10 compares the frequency distributions 
from the full ensembles (both emissions and climate un-
certainty) to those from two different ensemble variations: 
(1) ensembles with median emissions from the scenarios 

combined with climate uncertainty (ClimUnc, light color 
in the figure), and (2) ensembles with uncertain emissions 
combined with median climate parameter values (EmiUnc, 
dark color in the figure). Comparing the ClimUnc and 
EmiUnc ensembles, whichever is wider is a greater con-
tributor to the overall uncertainty in the climate outcome. 
For CO2 concentrations, uncertainty due to emissions is 
greater than uncertainty due to climate, especially for the 
Reference scenario (Figure 10a). Emissions uncertainty is 

Figure 9. (a) Global precipitation over time for each ensemble scenario relative to 1861–1880 (shaded areas represent 90% 
probability bounds. Lines are the median). (b) Frequency distributions of global precipitation in 2091–2100 relative to 1861–1880 
(dashed lines are the medians). 
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even more important for total radiative forcing (Figure 10b) 
because forcing is also affected by uncertainty in other 
greenhouse gases and aerosols, such as sulfate (from SO2 
emissions) and black carbon. However, the opposite is seen 
for temperature (Figure 10c) and precipitation (Figure 10d); 
for those outcomes, uncertainty due to climate is greater 
than uncertainty due to emissions. The greater effect of 
climate uncertainty on temperature and precipitation is not 
that surprising as the uncertain climate parameters most 
directly relate to how temperature is affected by a given 
level of radiative forcing, with only a secondary effect on 
carbon uptake by oceans and the terrestrial biosphere in 
response to warming.

As seen in Figure 10, using only climate uncertainty with 
median emissions narrows the distributions significantly 
for CO2 concentrations and total radiative forcing, but 
only very slightly narrows the distributions for global tem-
perature and precipitation. This result occurs because the 
addition of emissions uncertainty is largely offset by climate 
uncertainty. The opposite pattern emerges when there is 
only emissions uncertainty with median climate parameter 
values—the distributions are significantly narrowed for 
temperature and precipitation, somewhat narrowed for CO2 

concentrations and only slightly narrowed for total radiative 
forcing. For total radiative forcing (and to a lesser extent 
CO2 concentrations), the addition of climate uncertainty is 
largely offset by emissions uncertainty. These results indicate 
that cascading uncertainties are not necessarily additive, 
and capturing more uncertainties does not automatically 
mean the uncertainty range of outcomes widens because 
uncertainties can offset one another.

3.7	GDP and Welfare Effects

3.7.1	 Global 

For all ensemble scenarios, GDP is endogenously deter-
mined in the model and therefore uncertain.2 For the 
Paris2C and Paris1.5C scenarios, which have the same 
emissions trajectories for all ensemble members, the GDP 
impact of meeting that trajectory varies because the level 
of abatement needed to keep emissions on the specified 
trajectory, and the technology costs of doing so, varies. 
Here we focus on GDP results through 2050. Relative to 

2	  As noted previously, the particular approach used in this paper 
does not include climate and other environmental feedbacks on the 
economic system that would result from changes in the Earth system.

Figure 10. Frequency distributions for climate outcomes in 2091–2100 relative to 1861–1880 for Reference and ParisForever 
ensembles with emissions uncertainty plus median climate (EmiUnc, dark colors) vs. ensembles with median emissions plus 
climate uncertainty (ClimUnc, light colors) vs. ensembles with both emissions and climate uncertainty (medium colors). (a) CO2 
Concentrations, (b) Total Radiative Forcing, (c) Temperature, and (d) Precipitation.
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the Reference scenario, median global GDP in 2050 is 2.1% 
lower under ParisForever, 6.2% lower under Paris2C, and 
18.4% lower under Paris1.5C (Figure 11a). This shows 
the significant additional reduction in GDP of achieving 
1.5C vs. 2C. In all scenarios, GDP is growing, with median 
GDP in 2050 ending up 2.2 times higher than 2020 levels 
under Reference (with a 90% range of 2–2.4x), 2.16 times 
higher under ParisForever (with a 90% range of 2–2.3x), 
2.16 times higher under Paris2C (with a 90% range of 
1.9–2.2x), and 1.8 times higher under Paris1.5C (with a 
90% range of 1.7–2x). 

In terms of the average annual GDP growth rate from 
2020–2050, Reference has a median of 2.66%, with a 90% 
range of 2.36–2.96%. ParisForever has a median of 2.6%, 

with a 90% range of 2.3–2.9%. Paris2C has a median of 
2.45%, with a 90% range of 2.2–2.7%. Paris1.5C has a me-
dian of 1.97%, with a 90% range of 1.7–2.3%. As such, 
even stringent climate policy allows for significant global 
economic growth, just less than would occur in the ab-
sence of policy. 

We use welfare change as a measure of policy cost. Welfare 
change is measured as the loss or gain in economy-wide 
consumption when there is mitigation policy compared 
to when there is not (the Reference scenario). Global net 
present value (NPV) welfare losses from 2020–2050 has 
a median of 1.2% under ParisForever (with a 90% range 
of 0.9–1.6%), 1.4% under Paris2C (with a 90% range of 
1–1.9%), and 6.2% under Paris1.5C (with a 90% range of 

Figure 11. (a) Global GDP 2020–2050 for each ensemble scenario (shaded areas represent 90% probability bounds. Lines are the 
median). (b) Frequency distributions of average annual global GDP growth from 2020–2050 (dashed lines are the medians). 
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5–7.7%) (Figure 12). This once again shows the significant 
additional cost of achieving 1.5C vs. 2C. A feature of the 
uncertainty in welfare changes is its skewness, with lon-
ger tails on the end of higher welfare losses. This results 
from the fact that there are many more combinations of 
input assumptions that can make an emissions constraint 
cause relatively smaller welfare losses. There are far fewer 
combinations that can lead to very high costs of abatement 
and large welfare losses, but these large negative welfare 
changes cannot be ruled out based on the uncertainty in 
input assumptions used here. 

In general, there are several factors affecting these welfare 
changes. First, additional representation of low-carbon 
technologies and abatement opportunities, particularly 
the inclusion of negative emission technologies, would 
lower the cost of policy, and could truncate the tails of 
high welfare losses. For example, other work that includes 
biomass electricity with CCS (BECCS) in the MIT EPPA 
model shows that the availability of BECCS significantly 
reduces the cost of achieving stringent climate policies 
(Fajardy et al, 2020). While negative emission technologies 
are often not seen as playing much role until the second half 
of the century, their availability lowers the welfare impact 
in the first half of the century by providing headroom for 
near-term emissions, allowing for a more gradual energy 
transition.

Second, the timing of the policy plays an important role 
in welfare changes. For example, if global carbon pricing 
toward achieving 1.5C with 50% probability were to begin 

in 2020 rather than after 2030, we estimate a median NPV 
welfare losses for 2020–2050 to be 4.6% rather than 6.2%. 
This shows that starting the policy earlier can reduce the 
costs of meeting the policy, as it allows time for a more 
gradual transition in the early years of the policy. Sim-
ilarly, if fewer emissions reductions are required in the 
near-term, for example because negative emissions allow 
for greater reductions later in the century, then the policy 
costs through 2050 can also be reduced. 
Third, the discount rate applied in the NPV calculation is a 
well-known factor in determining present value estimates 
of welfare changes. As an example, increasing the discount 
rate from 4% to 5% reduces the median NPV welfare loss 
from 2020–2050 for Paris1.5C from 6.2% to 5.8%. The 
longer the time horizon, the greater impact of the discount 
rate on welfare changes.

3.7.2	 Regional Variation

An important consideration in estimates of regional costs 
is the nature of the constraints imposed across regions to 
achieve the reductions needed in the Paris2C and Paris1.5C 
scenarios. Here, we determined a global carbon price tra-
jectory, given median socio-economic parameter values, 
consistent with the temperature targets and designed to 
optimize global welfare. This setting results in regional 
emissions trajectories that ensure marginal abatement costs 
in each region are equal to the global carbon price. The 
resulting regional emissions were then used to determine 
the initial regional allocation of emissions allowances for 
the Paris2C and Paris1.5C ensembles implemented as global 

Figure 12. Frequency distributions of global net present value (NPV) of welfare changes (percent change in welfare relative to 
Reference) from 2020–2050, discounted at 4% (dashed lines are medians).
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emissions trading systems. This implies that under the 
emissions cap with median parameter settings, there is no 
emissions trading among regions, as the marginal cost of 
abatement across regions is already equalized. However, 
uncertain economic growth, technology costs, and re-
source availabilities across regions will mean that within 
an ensemble regions will be net allowance buyers in some 
simulations and net sellers in others, and their net trading 
position may change over the time-frame of the simula-

tion. The regional cost results shown below are conditional 
on the regional emissions allocations obtained by global 
optimization under median climate parameters. Different 
regional allocations would have different regional cost 
implications, and are a worthy topic for future research. 

There is significant variation in GDP growth across re-
gions under the scenarios. Figure 13 shows the frequency 
distribution of the average annual GDP growth rate from 
2020–2050 for six selected regions: the United States (USA), 

Figure 13. Average annual GDP growth rate from 2020–2050 for each ensemble scenario for selected regions: (a) United States 
(USA), (b) Europe (EUR), (c) China (CHN), (d) India (IND), (e) Africa (AFR) and (f) Middle East (MES) (dashed lines are medians).
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Europe (EUR), China (CHN), India (IND, Africa (AFR) 
and the Middle East (MES). The median and 90% bounds 
are given in Table 3. For the USA and Europe, the ensemble 
scenarios are largely on top of one another. Median average 
annual GDP growth in the USA is just below 2% for all 
scenarios except Paris1.5C, which is 1.84%. For Europe, the 
GDP impact of Paris1.5C is a bit greater than in the USA, 
but still relatively small. Europe even has the potential for 
GDP gains under Paris2C as a seller of emissions permits. 
There is less overlap of ensemble scenarios for China, and 
even less for India, Africa and the Middle East. 
Under stringent policy, the world must shift away from oil 
(as shown in the next section). Since oil is such a central 
part of the economy in the Middle East, that global energy 
transition has a significant cost in the Middle East. Under 
Paris1.5C the Middle East actually becomes a permit seller. 

Because its economy has dropped so much due to the global 
transition away from oil, emissions in the region fall below 
the cap, allowing for the sale of permits.

These results raise serious issues of equity among countries, 
especially between wealthier countries where the economies 
are now less energy-intensive, and poorer countries still in a 
relatively energy-intensive stage of growth. If a global trading 
system were to develop as the leading approach for reducing 
emissions, allowance allocation can be one mechanism to 
facilitate financial transfers from developed to developing 
countries. However, with uncertainty in growth and other 
factors, determining an allowance allocation that would 
achieve a given level of transfer would be a challenge. 

These results also highlight potential areas for future model 
development. The Middle East shows very large welfare 

Figure 14. Global fossil primary energy share over time for each ensemble scenario (Shaded areas represent 90% probability 
bounds. Lines are the median). 

Table 3. Average annual GDP growth rate 2020–2050 in selected regions.

Average Annual GDP Growth Rate 2020–2050: Median (90% range)

Reference ParisForever Paris2C Paris1.5C

USA 1.97 (1.37–2.76) 1.96 (1.36–2.72) 1.95 (1.39–72) 1.84 (1.27–2.58)

Europe 1.67 (1.10–2.25) 1.63 (1.09–2.18) 1.69 (1.15–2.26) 1.49 (0.97–2.04)
China 3.70 (2.27–5.43) 3.69 (2.24–5.41) 3.43 (2.03–4.94) 2.81 (1.68–4.07)
India 4.36 (3.35–5.24) 4.39 (3.41–5.27) 4.00 (3.14–4.81) 2.29 (1.43–3.12)
Africa 4.13 (3.58–4.61) 4.06 (3.51–4.54) 3.55 (3.11–3.95) 2.39 (1.91–2.81)
Middle East 3.05 (1.90–4.17) 2.83 (1.70–3.96) 2.10 (0.93–3.17) 0.95 (-0.12–1.96)
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costs because it is a fossil fuel exporter in a world that where 
there is very little demand for fossil fuels. The constant 
elasticity of substitution (CES) nature of the CGE model 
prevents large sectoral changes in the underlying structure 
of an economy, and so as the global oil market collapses, the 
economy in the Middle East is hit hard. Understanding and 
modeling how the structure of the economy could shift to 
other industries is important in determining whether such 
oil-dependent economies can avoid large economic impacts. 

3.8	Energy 
An energy transition away from fossil fuels is required in 
order to achieve the long-term temperature goals of the 
Paris Agreement. This can be achieved by both switching to 
low-carbon energy sources and by reducing the amount of 
energy used in both production and consumption (which 
is driven by the ease of substituting energy for non-energy 
inputs to production and consumption). Figure 14 shows 
global fossil primary energy (including energy deployed 
with CCS) as a percentage of total global primary energy 
use over time. In 2020, the fossil share is 88%, and while it 
does fall in all scenarios, the share in 2100 is dramatically 
different in Reference and ParisForever compared with 

Paris2C and Paris1.5C scenarios. The median 2100 fossil 
share is 79% (with a 90% range of 66–87%) under Reference, 
76% (with a 90% range of 64–84%) under ParisFover, 26% 
(with a 90% range of 21–46%) under Paris2C, and 23% 
(with a 90% range of 20–29%) under Paris1.5C.
Figure 15 shows frequency distributions of the fossil energy 
share for various points in time: 2035, 2050, 2075 and 2100. 
The fossil share drops early on under Paris1.5C, falling to 
median of about 65% in 2035. By 2050, the median fossil 
share declines to about 70% under Paris2C and 55% under 
Paris1.5C. By 2075, the median fossil share falls to about 
40% under Paris2C and 30% under Paris1.5C, ultimately 
ending up at 26% and 23%, respectively, in 2100. 
As fossil energy is phased down under stringent climate 
policy, other low-carbon energy sources take its place. 
Figure 16 shows the uncertainty in global primary energy 
by source for 2030, 2050 and 2100 under the Reference and 
Paris2C scenarios. The sources of primary energy in our 
model are coal (with or without CCS), natural gas (with or 
without CCS), oil, bioenergy, renewables (wind and solar), 
nuclear and hydro (hydro is not shown in Figure 17 as it 
is modeled as a fixed resource so there is virtually no un-

Figure 15. Frequency distributions of the global fossil primary energy share for: (a) 2035, (b) 2050, (c) 2075 and (d) 2100 (dashed 
lines are medians).
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certainty around its deployment). The amount of primary 
energy from each of these sources is uncertain. Notably, 
Reference (darker shades in the figure) and Paris2C (lighter 
shades in the figure) diverge significantly for coal, gas and 
oil— under Reference all three fossil energy sources grow 
over time, whereas under Paris2C they decline over time 
(starting in 2025 for coal, 2045 for gas and 2050 for oil). 
Under Paris2C, there is a particularly dramatic reduction 
in primary energy from coal between 2030 and 2050, and 
from oil between 2050 and 2100. The oil use is offset by a 
dramatic increase in bioenergy between 2050 and 2100, 
largely in the form of bio-oil as a substitute for refined oil. 
However, even under Reference there is a large expansion 
of bioenergy by 2100. Coal and gas with CCS are unused 
under Reference as there is not an economic case for them. 
There is some potential for coal and gas CCS under Paris2C 
in the second half of the century. 
In terms of making energy investment decisions today 
in the face of policy uncertainty, the results suggest that 
renewables offer the safest bet, with great future potential 
regardless of the level of policy. They end up somewhat 
lower in 2100 in Paris2C than in Reference because overall 
consumption, including electricity consumption, is lower 
under stringent policy. However, if the model represented 
more options for electrification, it is possible that total 
electricity consumption would increase in the Paris2C 
scenario relative to the Reference scenario, and renewables 
would grow beyond Reference levels throughout the century. 
Electrification opportunities is an area for further model 
development. Advanced nuclear generation also has the 

potential to play an important role under Paris2C in the 
second half of the century. The large uncertainty range for 
nuclear is largely driven by China, where nuclear has the 
potential to play a large role in the country’s energy mix. 

4.	Conclusions
Uncertainty is unavoidable in economic, energy and climate 
projections. However, as understanding of underlying tech-
nology and economic factors and Earth system responses 
advances, updated estimates of uncertainty will be needed 
to help inform mitigation and adaptation decisions. This 
paper presents a consistent framework for uncertainty 
quantification in coupled human-Earth system models, 
which supports a broad exploration of global-change 
uncertainty and provides a probabilistic interpretation 
of socio-economic and climate outcomes. The analysis 
results enable a risk management approach to decisions 
in response to global climate changes. 

The Paris Agreement set a goal of limiting global average 
surface temperature warming to “well below” 2°C, and 
to attempt a 1.5°C target. These temperature targets are 
often translated into radiative forcing, concentrations, or 
emissions targets or budgets. Typically, the relationship 
between emissions, concentrations, radiative forcing and 
temperature is expressed without uncertainty. Here we 
account for uncertainty in that relationship, exploring the 
degree to which a given emissions trajectory can be ex-
pected to meet a proposed climate target. The application 

Figure 16. Boxplots of global primary energy by source in 2030, 2050 and 2100 under Reference and Paris2C. The 2015 emissions 
are shown in black as a point of reference.
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illustrates that emissions targets will need to be adjusted 
over time as uncertainty in the climate system is resolved. 

Our results show how climate policy lowers the upper tail 
of the temperature change more than the median, and that 
even relatively modest policies can significantly reduce the 
likelihood of high temperature outcomes. We also illustrate 
the fact that representing more input uncertainties does 
not automatically widen the range of outcomes because 
uncertainties can offset one another. We find that, even 
under a stringent climate policy designed to meet 1.5°C, 
the global economy continues to grow significantly, but 
that burden sharing issues remain as policy costs can vary 
significantly across regions. In terms of the energy future, 
renewable sources are expected to expand significantly 
regardless of the level of future policy. 

This study advances and updates an earlier analysis con-
ducted using the MIT IGSM. The simulations’ results show 
lower, though still significant, surface warming in the Ref-
erence scenario than previously, with median end-of-cen-
tury warming of 3.5°C and a 90% range of 2.8–4.3°C. This 
compares with a median of 5.7°C in the earlier study. About 
0.5°C of the difference is due to updated estimates in the 
human system and the rest of the difference is explained 
by changes in Earth system estimates. This uncertainty 
quantification approach can also guide future research 
and model development efforts. It can identify key com-
ponents and assumptions in models and uncertainties of 
greatest importance or least understanding, highlighting 
areas that warrant the most attention. For example, this 

effort brought to light several areas for further research 
and model development, including the representation of 
additional abatement options (e.g. for agriculture, industry 
and residential sectors, and elaboration of electrification 
pathways), the representation of structural economic shifts 
in CGE models, outcomes at subglobal levels (regions, 
sectors, technologies), and implications of regional emis-
sions allocations. 

This approach to uncertainty quantification can also guide 
scenario development. Whereas standardized scenarios 
constrain the uncertainty space explored, this probabilistic 
ensemble approach can give a more comprehensive view 
of uncertainty, and scenarios (and sensitivity tests) can 
be developed that connect to the distributions of inputs 
and/or outputs. The ensemble results can also be utilized 
in scenario discovery techniques to identify conditions 
consistent with outcomes of interest, for example salient 
tipping points, large socio-environmental inequities or 
particular energy or economic outcomes. 

Another contribution of our approach is the insight provid-
ed into how multiple uncertainties interact and the relative 
human vs. Earth system contributions to uncertainty in 
climate-related outcomes. 
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Appendix A. Input Probability Distributions
The development of probability distributions for socioeconomic parameters is described in 
Morris et al., (2021) and for Earth system parameters in Libardoni et al., (2019, 2018a,b). This 
appendix summarizes the probability distributions for all uncertain parameters. 

Table A.1. Mean and standard deviation of historical annual growth rates, and 5th, 50th and 95th percentiles of projected average annual 
growth rates for 2015–2100 (Morris et al., 2021).

Region

Historical 1950–2015 Projected Average Annual Growth Rate 2015–2100

Av Annual Std Dev 5th 50th 95th

AFR 3.9% 1.7% 3.1% 3.4% 3.7%
ANZ 3.5% 1.7% 1.7% 2.1% 2.5%
ASI 5.8% 2.5% 1.8% 2.3% 2.8%
BRA 4.4% 3.7% 2.1% 3.0% 3.8%
CAN 3.5% 2.4% 1.3% 1.8% 2.3%
CHN 6.9% 5.1% 2.0% 2.9% 3.9%
EUR 2.9% 2.0% 1.1% 1.5% 1.9%
KOR 6.8% 5.1% 1.4% 2.3% 3.3%
IDZ 4.9% 4.2% 1.8% 2.7% 3.5%
IND 5.0% 3.1% 2.7% 3.4% 4.0%
JPN 4.5% 4.2% 0.7% 1.5% 2.2%
LAM 3.4% 2.7% 2.3% 2.7% 3.3%
MES 4.9% 4.0% 2.0% 2.7% 3.3%
MEX 4.2% 3.5% 2.1% 2.7% 3.4%
REA 4.6% 1.9% 3.0% 3.4% 3.7%
ROE 2.7% 5.3% 1.6% 2.6% 3.7%
RUS 2.7% 6.0% 0.9% 1.9% 3.0%
USA 3.1% 2.3% 1.3% 1.7% 2.2%

WORLD 3.9% 1.4% 2.1% 2.3% 2.5%

Figure A.1. World population for the 5th, 50th and 95th percentiles based on 400 samples, 1,000 samples and 10,000 samples from 
the UN (Morris et al., 2021).
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Table A.2. Distributions for Uncertain Socio-Economic Model Parameters (Morris et al., 2021). 

Parameter Category Parameter Specific Region/Sector Distribution

Population By Region See Figure A.1
GDP (Capital and Labor Productivity) By Region See Table A.2
AEEI Each region with separate distribution Normal(1,0.55)

Advanced Technology Costs 
(Uniform distributions of cost scalars with 50% 
probability between minimum and median, and 
50% between median and maximum. Median = 
1. [MIN, MAX] is given here for each technology.)

NGCC [0.798, 1.148]
New Coal [0.643, 1.410]
Nuclear [0.590, 1.558]
Solar [0.542, 2.083]
Wind [0.489, 2.035]
Bioelec [0.504, 1.659]
Gas CCS [0.816, 1.335]
Coal CCS [0.840, 1.536]
BioCCS [0.553, 1.767]
WindGas [0.544, 1.767]
WindBio [0.378, 2.282]
Bio-Oil Pearson5(14.8, 40.6, Shift(1))

Fossil Fuel Resource Stocks
Oil Beta(1.537,3.5787,0.3405,2.7563)
Gas, Coal Beta(1.1127,2.213,0.2552.7501)

Technology Penetration Rates All advanced technologies Uniform(1.014, 1.589)

Urban Pollutant 
Initial Inventories

SO2 Each region with separate distribution Normal(1,0.3) 
CO ALL Normal(1, 0.25) 
BC, OC, VOC, NOx, NH3 ALL Lognormal(1.0439, 0.3132)

CH4

AGRI Beta(1.8, 1.8, 0.4, 1.6)
COAL, OTHR, FOOD Beta(2, 2, 0.89, 1.11)
GAS, OIL, EINT Beta(2, 2, 0.86, 1.14)
FD Beta(1.8, 1.8, 0.96, 1.04)
ROIL Beta(2, 2, 0.86, 1.14)

Urban Emission Trends
SO2, BC, OC Beta(7, 7, 0.155, 3.107) 
NOx, VOC, CO, NH3 Beta(3, 7, 0.4114, 2.467)

Elasticities of  
Substitution

Energy vs. Capital/Labor ALL Normal(1, 0.3)
Electric vs. Non-Electric ALL Normal(1, 0.15)

Interfuel Substitution
Electricity, Energy Int. Normal(1, 0.25)
All Others Normal(1, 0.15)

Labor vs. Capital

Agriculture Gamma(1.2564, 1.0666)
Oil, Coal, Natural Gas Normal(1, 0.087229)
Electricity Gamma(1.2564, 1.0666)
Energy Intensive Normal(1, 0.2158)
Services Gamma(25.82, 0.03923)
Other Beta(4.9776, 5.1354, 0, 2.0338)
Transportation Gamma(42.252, 0.02119) 
Dwellings Beta(4.9776, 5.1354 ,0, 2.0338)
Food Beta(4.9776 ,5.1354, 0, 2.0338)

Energy vs. Non-Energy Final Demand Loglogistic(0, 1, 3.9743)
Resource Supply Coal, Oil, Natural Gas Beta(1.5, 2.8 ,0.507, 2.03)
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Parameter Category Parameter Specific Region/Sector Distribution

Abatement Cost 
Elasticities

CH4 Elas. In Agriculture

USA, CAN Pearson5(4.8285, 4.044)
MEX, IDZ, BRA, AFR, LAM Beta(3.2254, 3.1, 0, 1.957)
JPN Beta(3.207, 4.709, 0.143, 2.303)
ANZ Beta(7.8, 7.8, 0, 2.0)
EUR Beta(2.8, 5.6, 0.042, 2.23)
ROE Beta(5.6, 6.8, 0.024, 0.193)
RUS Beta(3.7, 5.6, 0, 2.56)
ASI, KOR Beta(2.1, 4.1, 0, 3.121)
CHN Loglogistic(-0.053, 1.053, 3.657)
IND Beta(7.57, 11.355, 0.0017, 2.53)
MES Beta(3.2284, 3.46, 0, 2.079)
REA Beta(3.229, 3.4608, 0, 2.0795)

N2O Elas. in Agriculture

USA, CAN, JPN, EUR, ANZ, KOR Beta(8.7, 7.8, 0, 1.89)
MEX, ROE, RUS, ASI, CHN, IND, BRA, 
AFR, MES, LAM, REA, IDZ Beta(5.094, 5.294, 0, 2.042)

RUS Beta(7.795, 5.5, 0.2532, 1.517)
ROE Beta(4.2, 4.3, 0, 2.026)

Vintaging ALL Gamma(10.428, 0.09904)

Note: All distributions are normalized to have a median of 1. 

Table A.2 (continued). Distributions for Uncertain Socio-Economic Model Parameters.

Figure A.2. Distribution of climate sensitivity (CS) and the rate of ocean heat uptake (square root of vertical diffusion coefficient, Kv). 
Red dots show values of CS and SQRT(Kv) for 400 samples. The contour lines are for the 5, 10, 25, 50, 75, 90 and 95% percentiles 
(Sokolov et al., 2018). 
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Figure A.3. Frequency distribution of climate sensitivity (CS). Black vertical line shows the median value and the black horizontal bar 
shows the 90% probability interval (Sokolov et al., 2018). Red solid lines are the CMIP5 estimate from Table 9.5 of IPCC (2013). Red 
dashed lines are estimates from Sherwood et al., (2020).

Figure A.4. Frequency distribution of transient climate response (TCR). Black vertical line shows the median value and the black 
horizontal bar shows the 90% probability interval (Sokolov et al., 2018). Red lines are the CMIP5 estimate from Table 9.5 of 
IPCC (2013).
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Appendix B. Comparing Emission Results to Emissions from 
IPCC AR5 Report

Figure A.5. Frequency distribution of transient climate response to emissions (TCRE). Black vertical line shows median value and the 
black horizontal bar shows the 90% probability interval (Sokolov et al., 2018). Red line shows the CMIP5 estimate from Gillett et al., 
(2013). (EgC is exagrams of carbon).

Figure B.1. Total global GHG emissions range (for the Reference and ParisForecver ensembles) and emissions constraint (for 
the Paris2C and Paris1.5C ensembles) in Gt CO2eq compared with scenarios in the IPCC AR5 Report. (Source for AR5 figure: 
IPCC (2014)).

Report 349	 MIT JOINT PROGRAM ON THE SCIENCE AND POLICY OF GLOBAL CHANGE

28



Appendix C. New vs. Previous Wheels
The results in this study differ from those in the previous study (Sokolov et al., 2009 and Web-
ster et al., 2012) for several reasons. The key differences in this study compared to the previous 
study include: 

	• New version of MIT Earth System Model (MESM) (see Sokolov et al., 2018)
	◆ Updates to forcings: CH4, N2O, aerosols 
	◆ Updates to land system’s hydrology and biogeophysics

	• New version of EPPA model (see Chen et al., 2016; Morris et al., 2019)
	◆ Updates to GDP growth rates (lower, especially for China), population, technology costs 

(e.g. cheaper renewables), and other assumptions
	◆ Updates to “Reference” scenario: now includes projected expansion of renewables due to 

mandates, etc.
	◆ Benchmarked model to recent history, which implicitly captures a array of policies that 

result in lower emissions
	◆ Lower “business-as-usual” emissions result from these changes

	• New climate parameter distributions (see Libardoni et al., 2019, 2018a,b)
	• New socio-economic parameter distributions (see Morris et al., 2021)
	• Different policy scenarios (e.g. Paris2C scenario vs. 560 ppm CO2 scenario)

Figure C.1. Comparision of Greenhouse Gamble Wheels from this study for the Reference and Paris2C scenarios (top row) to those 
from the previous study for the No Policy and Level 2 scenarios (bottom row). The new Paris2C scenario was specifically designed to 
achieve 2°C with a 66% probability, and has a median end-of-century temperature change of 1.9°C, relative to 1861–1880. The Level 
2 scenario in the previous study has median end-of-century concentrations of 560 ppm CO2 (660 ppm CO2eq), which resulted in a 
median end-of-century temperature change of 2.3°C, relative to 1981–2000. It is important to note that results in the previous study 
were reported relative to the 1981–2000 average, whereas this new study reports results relative the 1861–1880 average. The 
difference between the 1981–2000 average and the 1861–1880 average is 0.5°C. 
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Figure C.2. Comparison of distributions of global warming under the reference scenario from: (1) this study—New Climate, New 
Emissions (in red), which has a median of 3.5°C, (2) the previous study—Old Climate, Old Emissions (in black), which has a median 
of 5.7°C, and (3) ensemble simulations using the latest Earth system model and climate distributions from this study but emissions 
from the previous study—New Climate, Old Emissions (in blue), which has a median of 4.0°C. This indicates that of the difference 
in reference median surface warming results between this study (3.5°C) and the previous study (5.7°C), 0.5°C can be explained by 
the difference in anthropogenic emissions, and the remaining difference is due to differences in the climate system response to 
emissions.

Figure C.3. Frequency distribution of climate sensitivity (CS) from this study (NEW, in red) compared to previous study (OLD, 
in black). 
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Figure C.4. Frequency distribution of transient climate response (TCR) from this study (NEW, in red) compared to previous study 
(OLD, in black). 

Figure C.5. Comparison of global greenhouse gas emissions results from this study to those from the previous study. From this 
study, the 90% range of global GHG emissions are shown as shaded bands for Reference (red) and ParisForever (purple) ensembles 
(with the median shown as a solid line), and the global GHG emissions constraint is shown for the Paris2C (blue) and Paris1.5C 
(green) ensembles. These are overlayed onto the results from the previous study (see Webster et al., 2012), for which solid lines 
indicate median emissions, and dashed lines indicate 5% and 95% bounds on emissions. In the previous study, the policy scenarios 
are No Policy (black), Level 4 (red, 710 ppm CO2), Level 3 (orange, 640 ppm CO2), Level 2 (blue, 560 ppm CO2 ), and Level 1 (green, 
480 ppm CO2).
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