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Figure 1: Los Angeles, California Skyline (David McNew/Getty Images North America/Getty Images).

ABSTRACT
As city planners design and adapt cities for future resilience and
intelligence, interactions among neighborhood morphological de-
velopment with respect to changes in population and resultant
built infrastructure’s impact on the natural environment must be
considered. For deep understanding of these interactions, explicit
representation of future neighborhoods is necessary for future city
modeling. Generative Adversarial Networks (GANs) have been
shown to produce spatially accurate urban forms at scales repre-
senting entire cities to those at neighborhood and single building
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scale. Here we demonstrate a GANmethod for generating an ensem-
ble of possible new neighborhoods given land use characteristics
and designated neighborhood type.
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1 INTRODUCTION
As populations grow and shift, they will demand new built infras-
tructure within and at the edges of cities. Plans for these changes
must consider architecture, society, culture, environment and tech-
nology so that neighborhoods develop in resilient and intelligent
ways [5]. Designs for new neighborhood morphologies have been
approached historically using the concept of urban tissues [12],
which requires identifying, subsetting and combining the physical
elements (common size, shape and material) from existing neigh-
borhoods into new ones [9]. Because a large amount of data on
the built environment are available in different formats and on
different scales, machine learning techniques, including neural net-
works, have been employed to find patterns among these various
data [2]. In particular, Generative Adversarial Networks (GANs),
a type of deep neural network, have been applied to geospatial
urban morphological image data to calculate new and representa-
tive land-use configurations quickly saving human planners time
and potentially offering effective and novel suggestions for opti-
mizing priorities for new neighborhoods [18, 20, 21]. One type of
GAN used for generating neighborhood morphologies examines
the types of neighborhoods characteristic of different cities using
different models with exemplary training data for each city [4].
Another approach uses one type of geospatially located image to
project a new type of image associated with the same location [7].
However, results of these studies are not necessarily published in
formats that urban planners can use. Here, we combine these two
methodologies to generate neighborhood morphological images
by neighborhood type (residential, commercial or mixed) using
land cover characteristic images and target building footprint and
height images. We then outline a process for turning the results
into GIS-readable shapefiles for use by prospective decision makers.

2 METHODOLOGY
GAN models are a set of deep neural networks comprising a gener-
ator and a discriminator in which the generator attempts to create
synthetic output that cannot be distinguished by the adversarially-
trained discriminator from real samples (Figure 2). The conditional
GAN that we employ for this work learns to map land cover char-
acteristics represented as an image paired with a concomitantly
geolocated set of target building footprints, heights and placement
to a synthetically generated image of building footprints, heights
and placement. The model implemented here was developed in
PyTorch, and is based in part on [16]. The full model and approach
are described in the subsections following.

2.1 Model and Implementation
The generator for the GAN used here is a deep neural network
constructed with skips as a Unet [7, 15]. The Unet structure allows
for low-level features (in this case, roads and waterways) to flow
through the generator from layer 𝑖 to layer 𝑛−𝑖 , where 𝑛 is the num-
ber of layers. Allowance for these skips speed up the encoding and
decoding processes in the generator by limiting the bottle-necking
that can take place at the central layer. The encoder and decoder of
the generator include standardized blocks of convolutional, batch
normalization, dropout, and activation layers (Tanh for the output
layer and ReLU otherwise).

Figure 2: Overview of GAN architecture, including (left side)
land cover inputs to the generator and land cover paired
with generated or real buildings to the discriminator. The
right side of the diagram shows how backpropagation of er-
ror (loss) influences training.

The discriminator is a PatchGAN classifier [7, 10] that determines
whether sections of a generated image are real or fake–not just the
image as a whole. This discriminator is run convolutionally across
the image to provide decision output.

The objective function for the model is the same as that of [7]
and is described in Equation (3). The generator for this GAN uses
conditional adversarial loss for the discriminator model:

L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) = 𝐸𝑥,𝑦 [𝑙𝑜𝑔𝐷 (𝑥,𝑦)]+𝐸𝑥,𝑧 [𝑙𝑜𝑔(1−𝐷 (𝑥,𝐺 (𝑥, 𝑧))] (1)

with G as the generator and D as the discriminator. Here x is the
input image, y is the target image, and z is a random noise vector.
L1 loss, or mean absolute pixel difference between the generated
translation of the source image and the expected target image, is
used for the generator:

𝜆L𝐿1 (𝐺) = 𝐸𝑥,𝑦,𝑧 [| |𝑦 −𝐺 (𝑥, 𝑧) | |1] (2)
Again, x is the input image, y is the target image, z is the random

noise, and G(x,z) is the generated image. 𝜆 in the equation is set
equal to 100, which increases the importance of the L1 loss to 100
times that of the adversarial loss during generator training. These
two losses are combined (weighted sum) into a composite loss
function, which is used to update the generator:

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) + 𝜆L𝐿1 (𝐺) (3)

While the objective function described here includes random
noise as an input into the generator, it was ultimately not included
by [7] and was not used here because this model structure tended
to ignore the random input.

2.2 Data and Data Preparation
Three models were trained for this study so that characteristics
of three different types of neighborhoods (1.92km x 1.92km tiles)
could be captured: residential, commercial and mixed. Two types of
images associated with the Los Angeles, California area were used:
land cover images and images that included building footprints and
locations each with a height attribute. Using the image-to-image
approach, the models were trained to read in the land cover data
and output a set of buildings to fit the land cover description. The
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land cover images are drawn from the National Land Cover Data-
base (NLCD) [3], which classifies 30-meter resolution patches of
land according to their cover. The land cover classifications include
woodland types (greens), scrublands (tan), and different densities
of developed land (reds). With developed land in particular, darker
shades of red represent more dense urban areas, but does not indi-
cate the placement of individual buildings. To create the building
imagery, building polygons obtained fromModel America [11] were
rasterized, aggregated to a 30-meter resolution to match the NLCD
data, and given height as the raster value encoded in grayscale. In
this case, the darker the grayscale in a certain area, the taller the
building at that location. After rasterization, the datasets were split
into square neighborhood tiles. A simple Python script was written
to ensure the naming conventions from the two data sets matched
and that the tile pairs were accurately linked geospatially. A sample
pair is shown in Figure 3, with land cover on the left and building
representations on the right.

Figure 3: Example input and target pair of land cover and
building images.

Using the PyTorch deep learning library function ImageFolder,
we labeled corresponding 1.92km x 1.92km neighborhood tiles in
the Model America polygon data set as residential, commercial or
mixed by calculating the percentage by volume of each building
type (included as attributes in Model America) in each tile. Images
were labeled as residential if they included a total residential build-
ing volume of at least 80%. To be labeled as commercial, the total
commercial building volume threshold value was 75%. Otherwise,
the tiles were labelled as mixed. We used these labels to identify
and sort the respective images used in training the models.

2.3 Hyperparameter Tuning
As in [4], hyperparameters for both generator and discriminator in
the models include an Adam optimizer initialized with a learning
rate of 0.0002 and betas (exponential decay rates) of 0.5 and 0.999
respectively. Batch size for the models was 18, and each model was
run for 500 epochs.

2.4 Model Training
Using mini-batch stochastic descent optimization [7], the three
image-to-image translation models were trained, one each on resi-
dential, commercial and mixed neighborhoods. The residential data
set contained 514 image pairs; the commercial data set contained
224 image pairs and the mixed neighborhood data set contained 748
image pairs. For each neighborhood type, 80% of the image pairs
were used for training and 20% of the image pairs were used for
testing the models. For each iteration of training, the discriminator

was first tested on a batch of real image pairs. Next, fake images
were simulated by the generator. Afterwards the discriminator was
tested and updated based on its evaluation of the fake images and
the error calculated between the fake and the real images. Finally,
the error found between the real and fake images was used to
improve the generator. This procedure continually updated both
the generator and the discriminator so that the learning of each
network proceeded in parallel with the other.

2.5 Model Evaluation
Several types of model evaluation were used to evaluate the GAN
results. First, visual examination of the output samples was com-
pleted for each iteration [1] along with the loss calculation [7].
Further evaluation of the model quality was conducted using Peak
Signal to Noise Ratio (PSNR) [13, 17], which measures the quality
of reconstruction in image compression [8]; and Structural Simi-
larity Index Measure (SSIM) [14, 19], which is used to measure the
similarity between two images. Table 1 in Subsection 3.4 shows the
results of these metrics.

3 RESULTS AND DISCUSSION
Here we present the results of the image-to-image translation mod-
els on each of residential, commercial and mixed neighborhoods.
One characteristic learned duringmodel training for all of the neigh-
borhoods was the black and white pixelated appearance of the tar-
get inputs. During training, model feedback rewarded grayscale
pixel production. Models tended to simulate the appearance of the
varying grayscale pixels convincingly after training for 500 epochs.
Examples of these results are shown in Figures 4 through 9. This se-
lection of outputs was captured from the validation stage of training
on the final iteration of each model. Each figure displays a row with
three images: the land cover representation, the building footprints
(with grayscale encoded height) on the land and their placement,
and the GAN-generated building footprints, grayscale height repre-
sentation and placement for each neighborhood. Variation in size
between the data sets of each neighborhood type resulted in differ-
ences in the total number of iterations required for each training set.
However, batch size, number of epochs and number of graphical
processing units (GPUs) across model training was kept constant
to maintain the uniformity of the experiment (See Subsection 2.3).

3.1 Residential Neighborhood Generation
Figures 4 and 5 show simulated image results from the residential
model. The characteristics of the outputs correspond to the pat-
terns learned by the generator from the input and target images and
assessment by the discriminator. One such pattern is the correspon-
dence of the density of the land cover to the size and spacing of the
buildings. As shown in Figure 4, in the high-density (red-colored
land use) areas, buildings are small and tightly-packed. In lower-
density areas, such as the pink areas shown in the land cover image
in Figure 5, buildings are small and spread out. Results shown in
Figure 5 also indicate that the generator learns that no buildings
are located in areas of scrub (yellow) or woodlands (green).



ARIC ’22, November 1, 2022, Seattle, WA, USA Allen-Dumas, et al.

Figure 4: Land cover image, target image and generated im-
age for a high-density urban residential area in Los Angeles.

Figure 5: Land cover image, target image and generated im-
age for an urban residential area with woodland and scrub
in Los Angeles.

3.2 Commercial Neighborhood Generation
Figures 6 and 7 show that commercial buildings tend to be much
larger, and sometimes closer together, than residential buildings.
The high-density urban area shown in Figure 6 highlights two par-
ticularly large square buildings and many long rectangular struc-
tures (many clustered together) that may be strip malls or shop-
ping centers with roads between. The low-density commercial tile
shown in Figure 7 contains several patches with scrub (yellow) and
woodland (green) and very few buildings. This tile is classified as
commercial because of the building usage types in the urban area.
Within that commercial development, buildings are smaller but still
placed in patterns similar to those in the higher-density commercial
areas. Here again, the generator learns to place buildings only in
the urban area and not within the highly vegetated terrain.

Figure 6: Land cover image, target image and generated im-
age for a high-density urban commercial area in Los Ange-
les.

3.3 Mixed Neighborhood Generation
The tiles shown in Figures 8 and 9 contain characteristics of both
residential and commercial neighborhoods. Both figures display a

Figure 7: Land cover image, target image and generated im-
age for a low-density urban commercial area with woodland
and scrub in Los Angeles.

relatively even mix of larger, densely packed buildings and smaller,
spread-out structures. In each figure, the presence of large roads
emerges as buildings are placed away from these long linear spaces.
Additionally, buildings are not placed in the scrubland (yellow)
patches in the tiles. The generated image in Figure 9 shows an
attempt by the generator to place short small buildings in the space
defined by the lake (blue) in the land cover image. Because very few
lakes were included in the training images, it is possible that the
generator had not yet learned how to interpret the lake designation
in the land cover image. Otherwise, in both Figures 8 and 9, building
size and placement is learned and produced well in the generated
images.

Figure 8: Land cover image, target image and generated im-
age for a high-density urbanmixed residential and commer-
cial area in Los Angeles.

Figure 9: Land cover image, target image and generated im-
age for an urban mixed residential and commercial area
with scrub and lake in Los Angeles.

3.4 Model Performance
Three evaluation metrics were calculated for the generated images
after four different numbers of epochs of model training: Loss
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Figure 10: Land cover image, target image and ensemble of generated images for an urbanized residential area in Los Angeles.

(Subsection 2.1), PSNR (Subsection 2.5) and SSIM (Subsection 2.5).
As shown in Table 1, the weighted sum of the loss values calculated
from the objective function (Equation (3)) start high at 25 after
one training epoch, then stabilize at 5 after 250 epochs–an 80%
reduction in the loss value.

Results of an experiment by [17] to embed a watermark in the
least significant bits of randomly selected pixels of a selected tif
image showed that when these images were evaluated using PSNR,
typical values were between 13 and 47 dB. Table 1 shows that to
achieve PSNR values in that range for the tifs generated here, the
minimum number of epochs required is around 50.

Assessment of image quality based on the degradation of struc-
tural information between the target image and the generated image
was conducted using SSIM. Values for SSIM range between 0 and 1,
with 1 reachable only in the case that the two images are identical
[19]. Results here show that after 500 epochs, the target and gen-
erated images are highly structurally similar. However, as will be
discussed in Subsection 3.5, our goal here is not to generate images
identical to the target image, but to generate images with the basic
properties of the target images so that a variety of potential neigh-
borhoods may be tested for new developments under consideration
by urban planners.

Table 1: Improvement in generator loss values, PSNR and
SSIM over increasing numbers of epochs during training

𝑁𝑢𝑚𝐸𝑝𝑜𝑐ℎ𝑠 𝐿𝑜𝑠𝑠 𝑃𝑆𝑁𝑅(𝑑𝑏) 𝑆𝑆𝐼𝑀

1 25 1.27 0.009
50 15 16.7 0.468
250 5 22.9 0.946
500 5 25.0 0.980

3.5 Development of an Ensemble of Testable
New Neighborhoods for a Planned
Development

Once predicted new neighborhood developments are generated,
these products can help with analyses of planned neighborhoods

with respect to issues around architecture, society, culture, envi-
ronment and technology (as mentioned in Section 1). For example,
conversion of these products to polygon shapefiles can aid urban
planners using geographical information science (GIS) tools to com-
municate plans to an existing or prospective community. Building
energy modelers requiring characteristics of buildings in neighbor-
hoods for the future to adapt buildings for more efficient energy
use could also benefit from access to such files. These files can also
provide input to models generating urban parameters for predicted
neighborhoods that can be read by numerical weather models or
high resolution climate models and integrated into the land and
atmospheric process calculations of those models.

Figure 11: Post-processing pipeline to convert GAN-based
raster urban neighborhood to vector form. Polygons
marked with a red cross are spurious polygons and will be
eliminated.

Because the future is hard to predict and different types of neigh-
borhoods might satisfy different needs across new communities,
it is important for a model used for these purposes to be able to
generate multiple possibilities, that is, an ensemble of possibilities,
for a new neighborhood development. We show in Figure 10, how
the generation of an ensemble of neighborhood possibilities for
a single residential tile for a Los Angeles neighborhood can be
accomplished by capturing output every ten iterations over the
last 150 iterations out of 6,000 model simulations. These outputs
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have been successfully tuned to represent realistic building place-
ments through many iterations of training and can be used for the
development of future cities where environmental, geographical,
and infrastructural impacts can be tested. While Figure 3.5 shows
little difference among the outputs captured on different iterations,
select patches of each generated tile show some variability. While
this variability is small on the scale of 1.92 𝑘𝑚2, these differences
in building size and density are significant at urban block scale.

4 CONCLUSIONS AND NEXT STEPS
We have shown that given urban land cover characteristics and
associated target building heights, footprints and placements, an
image-to-image GAN can produce an ensemble of potential neigh-
borhoods compatible with the land cover characteristics.

Next steps for this research include the application of the method
to future land cover projections and post-processing of the GAN-
generated raster tif images of the urban neighborhoods to obtain
vector layers of building footprints that collectively represent the
synthetic neighborhoods. The output of the GAN is a raster image
which is a collection of regions of pixels where each region shares
a common pixel value. The pixel value shared by each region rep-
resents building height. A geospatial process called polygonization
will be used to generate vector polygons for all connected regions
of pixels sharing a common pixel value of building height (Figure
11). Each polygon in the output vector layer will be associated with
an attribute indicating the height of the building. This polygoniza-
tion process may generate a few spurious polygons which must
be eliminated based on their area (polygons marked by red cross
in Figure 11). Further, this vector layer will undergo a geospatial
coordinate transformation to reproject polygons to the appropriate
geospatial coordinate system. For the process of polygonization and
geospatial coordinate transformation, we will use ‘gdal_polygonize’
and ‘gdaltransform’ utilities respectively, provided by a Geospatial
Data Abstraction software Library [6]. The final building footprint
layer can then be used for various geospatial analysis tasks such
as urban planning, change analysis and street pattern design for
optimal mobility.

However, the method, while useful, does pose a few limitations.
For example, the pixel-level grayscale of generated images may ul-
timately not yield realistic building footprints, so some adjustment
of the results may be necessary to produce viable morphological
examples. Additionally, decisions about how to build neighbor-
hoods may require different priorities now than those that were
considered for the construction of existing neighborhoods, such
as accommodation of larger population per square kilometer, the
incorporation of electric vehicle charging stations or access to other
modern infrastructure, changing cultural opportunities or other
concerns; so an ensemble of potential future neighborhood mor-
phologies based on current and past physical properties may not
cover all of the considerations required for urban planning. The
development of new neighborhoods must certainly be an iterative
process, but this method for potential neighborhood generation
provides a useful contribution to that process.

ACKNOWLEDGMENTS
This work is supported by the DOE Office of Science as a part
of the research in Multi-Sector Dynamics within the Earth and
Environmental System Modeling Program under the Integrated
Multiscale Multisector Modeling (IM3) Scientific Focus Area.

REFERENCES
[1] Ali Borji. 2019. Pros and cons of gan evaluation measures. Computer Vision and

Image Understanding 179 (2019), 41–65.
[2] Vineet Chaturvedi and Walter T de Vries. 2021. Machine Learning Algorithms

for Urban Land Use Planning: A Review. Urban Science 5, 3 (2021), 68.
[3] J Dewitz. 2021. National Land Cover Database (NLCD) 2019 Products. data release

(ver. 2.0, June 2021). U.S. Geological Survey. https://doi.org/10.5066/P9KZCM54.
[4] Stanislava Fedorova. 2021. GANs for Urban Design. CoRR abs/2105.01727 (2021).

arXiv:2105.01727 https://arxiv.org/abs/2105.01727
[5] Manuel Gausa. 2021. Resiligence: Intelligent Cities/Resilient Landscapes. Actar D,

Inc.
[6] GDAL/OGR contributors. 2022. GDAL/OGR Geospatial Data Abstraction software

Library. Open Source Geospatial Foundation. https://doi.org/10.5281/zenodo.
5884351

[7] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1125–1134.

[8] Kamaldeep Joshi, Rajkumar Yadav, and Sachin Allwadhi. 2016. PSNR and MSE
based investigation of LSB. In 2016 International Conference on Computational
Techniques in Information and Communication Technologies (ICCTICT). IEEE,
280–285.

[9] Karl Kropf. 1996. Urban tissue and the character of towns. Urban Design Interna-
tional 1, 3 (1996), 247–263.

[10] Chuan Li and Michael Wand. 2016. Precomputed real-time texture synthesis with
markovian generative adversarial networks. In European conference on computer
vision. Springer, 702–716.

[11] Joshua New, Mark Adams, Anne Berres, Brett Bass, and Nicholas Clinton. 2021.
Model America–data and models of every US building. Technical Report. Oak Ridge
National Lab.(ORNL), Oak Ridge, TN (United States). 10.13139/ORNLNCCS/
1774134.

[12] Vítor Oliveira. 2016. Urban morphology: an introduction to the study of the physical
form of cities. Springer.

[13] PytorchIgnite. 2022. PSNR. Acessed from: https://pytorch.org/ignite/generated/
ignite.metrics.PSNR.html.

[14] PytorchIgnite. 2022. SSIM. Acessed from: https://pytorch.org/ignite/generated/
ignite.metrics.SSIM.html.

[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[16] Aditya Sharma. 2021. Pix2Pix:image-to-image translation in PyTorch & Tensor-
flow. Acessed from: https://learnopencv.com/paired-image-to-image-translation-
pix2pix/.

[17] Devendra Somwanshi, Indu Chhipa, Trapti Singhal, and Ashwani Yadav. 2018.
Modified Least significant bit algorithm of digital watermarking for information
security. In Soft Computing: Theories and Applications. Springer, 473–484.

[18] Dongjie Wang, Yanjie Fu, Pengyang Wang, Bo Huang, and Chang-Tien Lu. 2020.
Reimagining city configuration: Automated urban planning via adversarial learn-
ing. In Proceedings of the 28th International Conference on Advances in Geographic
Information Systems. 497–506.

[19] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[20] Abraham Noah Wu, Rudi Stouffs, and Filip Biljecki. 2022. Generative Adversarial
Networks in the built environment: A comprehensive review of the application
of GANs across data types and scales. Building and Environment (2022), 109477.

[21] Chunxue Xu and Bo Zhao. 2018. Satellite Image Spoofing: Creating Remote
Sensing Dataset with Generative Adversarial Networks (Short Paper). In 10th In-
ternational Conference on Geographic Information Science (GIScience 2018) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 114), Stephan Winter, Amy
Griffin, and Monika Sester (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 67:1–67:6. https://doi.org/10.4230/LIPIcs.GISCIENCE.
2018.67

https://doi.org/10.5066/P9KZCM54
https://arxiv.org/abs/2105.01727
https://arxiv.org/abs/2105.01727
https://doi.org/10.5281/zenodo.5884351
https://doi.org/10.5281/zenodo.5884351
10.13139/ORNLNCCS/1774134
10.13139/ORNLNCCS/1774134
https://pytorch.org/ignite/generated/ignite.metrics.PSNR.html
https://pytorch.org/ignite/generated/ignite.metrics.PSNR.html
https://pytorch.org/ignite/generated/ignite.metrics.SSIM.html
https://pytorch.org/ignite/generated/ignite.metrics.SSIM.html
https://learnopencv.com/paired-image-to-image-translation-pix2pix/
https://learnopencv.com/paired-image-to-image-translation-pix2pix/
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.67
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.67

	Abstract
	1 Introduction
	2 Methodology
	2.1 Model and Implementation
	2.2 Data and Data Preparation
	2.3 Hyperparameter Tuning
	2.4 Model Training
	2.5 Model Evaluation

	3 Results and Discussion
	3.1 Residential Neighborhood Generation
	3.2 Commercial Neighborhood Generation
	3.3 Mixed Neighborhood Generation
	3.4 Model Performance
	3.5 Development of an Ensemble of Testable New Neighborhoods for a Planned Development

	4 Conclusions and Next Steps
	References

