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Abstract—A wide range of programming models are currently
under rapid development to meet the needs of application devel-
opers looking to work on more complex machines. These models
fill a variety of roles. Some look to abstract supercomputer
architecture, including both processors and memory, to present
a strategy for portable performance across a wide range of
machines. Others look to expose concurrency by explicitly con-
structing task-driven dependency graphs that allow a scheduler to
find parallelism. Here we explore the implications for application
codes of adopting two such programming models, Kokkos and
Legion, one from each class of models. We specifically focus on the
software design implications on refactoring existing applications,
rather than the performance and performance tuning of these
models. We identify a strategy for refactoring the Energy Exas-
cale Earth System Model’s Land Surface Model, an extremely
complex code for climate applications, and prototype a series of
mini-apps that explore the adoption of Kokkos and Legion. In
doing this, we identify commonalities across the models, leading
to a series of conclusions about application software design
and refactoring for the adoption of novel programming models.
Specifically, we find that refactoring efforts to abstract physics
algorithms from data structures enable the use of a variety
of programming models. With this refactoring done, we find
that, at least in the case of Kokkos and Legion, these types of
programming models are sufficiently mature for active use by
even small application software development teams.

Index Terms—Software testing,Parallel processing,Distributed
processing,Runtime,Coprocessors,Multitasking

I. INTRODUCTION

Porting a complex scientific application currently based on
an MPI-only programming model to today’s complex super-
computing architectures can be a daunting task. As porting is
often motiviated by and done in conjunction with enabling new
scientific advances, the first step is identifying target scientific
and performance metrics. With these metrics, the application
is profiled and analyzed to determine an appropriate strategy
for meeting these goals. If the code base is small, and the goals
not too extreme, an application development team can poten-
tially port the code in one or more low-level, device-specific
languages (MPI+X). However, for complex applications, the
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performance-critical path may include hundreds of thousands
of lines of code that must all be ported to a device. For
significant advances in metrics, existing data-level parallelism
may not identify sufficient concurrency to allow the scalability
needed to reach the goal. In these cases, maintaining multiple
implementations is not feasible, and alternative programming
models, whether for device abstraction and/or for MPI alter-
natives, start to show their advantages.

One such complex application space is that of Earth System
Models (ESMs) in general and Land Surface Models, the
land component of an ESM. Understanding how components
of the Earth system interact to determine climate is critical
for local, national, and international interests. The Energy
Exascale Earth System Model (E3SM) is the US Department
of Energy’s (DOE) flagship climate model, and is used to meet
the scientific needs of the nation. The E3SM Land Model
(ELM) is a key component which describes the structure,
function, and evolution of physical, biological, and ecological
characteristics of Earth’s land areas. ELM maintains prog-
nostic state variables for energy, water, carbon, nitrogen, and
phosphorus, updating these on approximately half-hourly time
steps through a comprehensive collection of process prediction
modules. Two important challenges for computation in ELM
are the wide range of global land environments represented,
and the prevalence of heterogeneous landscape structure even
at very fine horizontal resolution.

Climate modeling is an application with opportunities
to leverage exascale computing power for great scientific
progress [1]. Increased resolution is necessary to move to-
ward cloud-resolving simulations in the atmosphere and eddy-
resolving simulations in the ocean. Furthermore, understand-
ing climatological impact on and feedbacks from the land
model are of critical importance to water, food, energy, infras-
tructure, and other human-centric impacts [2]. While currently
the land model is a small fraction of the computational time of
a coupled E3SM run, anticipated scientific goals and therefore
code versions of E3SM and ELM will require significantly
improved computing power and scaling. As new architectures
become available and the need for improved process represen-
tations, increased resolution, and more ensembles beg for more
resources, all components of E3SM are working to improve
their simulation throughput (measured in simulated years per
wallclock hour) and scalability.

Toward this aim, E3SM has been an early explorer of



both MPI+X and MPI+X alternatives. One new effort within
E3SM focuses on development of a Simple Cloud-Resolving
E3SM Atmosphere Model (SCREAM) which will target a
3km horizontal resolution, allowing explicit representation of
deep convection events. To allow portability to both GPU and
CPU based architectures, this model uses the Kokkos perfor-
mance portability library [17], following from the successful
implementation of an E3SM hydrostatic computational core
[4]. E3SM has been actively exploring task-based parallelism
approaches in a variety of projects, including the LEAP
project, which prototyped an implementation of the ocean
model in the Legion task-based runtime [5].

To explore appropriate strategies for meeting the perfor-
mance goals of DOE’s land modeling community, we here
consider approaches for porting a subset of processes from
ELM onto novel architectures at exascale. We investigate
the existing data model of ELM, and identify an approach
to refactor data model independent kernels from ELM. We
then develop the first in a series of mini-apps to test the
suitability of a variety of programming models, including
both layers for abstracting computer architecture and task
parallel programming models to identify and leverage existing
concurrency. We offer our experience in trying two of the more
mature programming models, Kokkos and Legion, in the hopes
that it will both help programming model developers identify
opportunities for improvement and convince application devel-
opers that these alternatives to MPI+X are ready for adoption
now. Note that this work will not focus on performance, but
instead on approaches for designing and refactoring software
for the adoption of these models. Despite this, our prototypes
adopt the norms established by documentation and tutorials
for these programming models, suggesting that performance
should be comparable to that of other applications that adopt
these models.

II. THE ENERGY EXASCALE EARTH SYSTEM LAND
MODEL

The E3SM Land Model (ELM) uses physically motivated
equations to solve for the exchange of water, energy, and
biogeochemical species with other Earth system components.
In doing this, it also solves for internal state, including
extensive representations of the movement and storage of
water, the life cycle of vegetation, and coupled biogeochemical
cycles including carbon. These processes provide some of the
key links between climate and society, including predicting
climate impacts on society through water availability and food
production capacity [2].

The scale of representation of these processes is of crit-
ical importance to the accuracy and applicability of the
land model’s predictions [6]. The Earth’s land surface is
characterized by heterogeneity across scales, and capturing
the effects of this heterogeneity is a key aspect of ELM’s
design. ELM places scale at the forefront of its design by
modeling individual processes at their own native scale, then
interpolating or restricting the effects of those processes across
scales to couple with other processes. This led ELM to

be built around an explicit scale hierarchy (see Figure 1),
each with a set of native processes and the ability to move
up and down the hierarchy through area-weighted averaging
(restriction) or downscaling. Grid cells, typically arranged
in a latitude-longitude mesh, tile the Earth and provide an
organizing unit to couple to the atmosphere. Within each grid
cell, topographic units potentially group fractions of the grid
cell by their elevation, slope, and aspect/orientation. Land units
split the topographic units by land cover (e.g. lakes, vegetated
surfaces, urban surfaces, etc). The column represents the scale
of physical processes such as water and biogeochemistry, and
plant functional types (PFTs) split portions of the column by
vegetation type, grouping plant species that function similarly.
Note that only the grid cell is spatially explicit; all other scales
are organized by aspatial characteristics. In this work, we will
focus on the finest two scales, which represent much of the
natural system physics while requiring restriction operations
that are typical of each scale transition.
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Fig. 1. ELM Scale Hierarchy

ELM’s data model (see Figure 2) closely follows the scale
hierarchy. At each level, the first dimension of each array
stores all elements at a given scale. Additional arrays include,
for each element, a parent index up the scale hierarchy, and
indices to the beginning and end of the slice of children
down the hierarchy. State and flux data at that scale are
grouped into derived data types (structs) of arrays according
to their physical functionality (i.e. water variables, vegetation
variables, etc). Arrays are decomposed into subdomains at the
grid cell level, and each grid cell is independent of all other
grid cells.

ELM, like many ESM components, is written in MPI and
Fortran 90 and is currently over 200,000 lines of code. This
large code base is developed and maintained by a small team
of order 10-20 active developers, the majority of whom focus
on process development as opposed to software design and/or
performance. Performance portability is therefore a priority;
ELM currently runs on a variety of CPU-only clusters across
DOE and academic institutions, and must continue to support
multiple architectures, but does not have sufficient resources
to optimize the code for each architecture independently.
Since supporting multiple MPI+X paradigms is financially not
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Fig. 2. ELM data model.

tractable, device abstraction layers such as Kokkos [17], RAJA
[?], and HPX [8] are of interest.

While it is unclear whether data parallelism is sufficient to
scale ELM to the needed applications, the rich set of processes
simulated by ELM provides unique opportunities for task-
based programming models. Subsystems such as hydrology,
energy, vegetation, and biogeochemistry likely have process
concurrency which is neither exposed nor leveraged in the
current code. Many of the land processes represented (e.g.
snow physics) are only relevant in certain parts of the world,
while heterogeneity in a process’s runtime due to effects such
as biodiversity (e.g. many PFTs in tropical forests versus few
in grasslands) suggest significant load imbalance across the
Earth. Task parallel runtimes such as Legion [5], Charm++
[9], Uintah [10], HPX [8], ParSEC [11], and others, which
explicitly construct a dependency graph, identify and exploit
process concurrency, and automate load balancing, have great
potential for ELM.

III. REFACTORING FOR NOVEL PROGRAMMING MODELS

Prior to porting a CPU-only code to any alternative architec-
ture, an extensive refactoring exercise can often make the pro-
cess significantly easier. Critically, most novel programming
models require some limitation on an application’s interactions
with its memory. As most applications convolve program data
with physical memory, a significant portion of the refactoring
process is simply separating these two concepts. Prior to
adopting any programming model, we have spent significant
effort to identify a refactoring strategy within our mini-app
that would support refactoring a complex code such as ELM.

Many authors have advised “best practices” for major refac-
toring efforts, landing primarily upon the need for extensive
unit and regression level tests, planning the refactor process,
and splitting refactoring efforts into sub-steps that are con-
ceptually orthogonal [12]-[14]. ELM development makes use
of a sophisticated testing environment that covers all aspects
of E3SM functionality. Because ELM has numerous features
which can be selectively enabled or disabled, and because
not all of those features are designed for co-operability, the
testing environment establishes a canonical list of science
configurations which must each pass a variety of system level
tests. For example, recent development introduced interactions
among carbon, nitrogen, and phosphorus [15]. That capability
is tested for its ability to run from initial conditions, to restart
seamlessly, and to maintain science results across a range of
parallelization implementations.

Therefore, we developed a three-step approach for develop-
ing mini-apps for testing novel programming models that we
believe to be applicable to the entire codebase. To illustrate
the strategy, we focus on the CanopyHydrology module of
ELM, which includes rain and snow canopy interception and
storage, the calculation of leaf wet and dry area fractions, and
the initialization of new snow layers as new snow is provided
to the surface.

First, the CanopyHydrology part of the existing Fortran
codebase was enucleated; that is, the module was refactored
to move all biogeophysical process representations to kernels
that are agnostic to the data structure. Enucleation is not a new
concept [?]; indeed it forms the core of libraries as wide-spread
as the C++ standard library. Despite this, it historically has
been rarely adopted by application software, where developers
often see the data structure implementation as an integral
part of the scientific model implementation. Introducing a
formal data model, which allows application developers and
computational scientists to co-design an interface to the data
structure, is a key first step in the refactoring approach.

The choice of kernel granularity was driven by both data
access patterns and the biogeophysics. This refactoring process
required significant thought and communication between the
application developer and the computational scientist to ensure
that kernels were appropriately designed. Critically, kernel
interfaces were designed to abstract away the scale hierarchy,
which is fundamentally tied to the data structures and memory
layout, from the mathematical equations that implement the
physical processes. As few assumptions as possible were made
about the underlying data layout; the goal is a library of
process kernels that are usable in multiple applications with
differing assumptions about the scale hierarchy. Listing 1
shows an example before the enucleation processes with the
start locations of code that was migrated to kernels identified.
Note that we have simplified all code snippets, including
omitting details and changing some data layout (from the
flattened model used by ELM, which requires more complex
and verbose indexing, to a two-dimensional array model), to
make the presentation simpler. In addition to those physics
kernels, one mathematical kernel is identified representing a



Listing 1. Original Fortran Module
module CanopyHydrologyMod

use ColumnType ,
use VegetationType ,

only :
only :

col_pp
veg_pp

implicit none

subroutine CanopyHydrology (bounds,
filter_nolakec, num_nolakep, filter_nolakep, &
atm2lnd_vars, canopyst_vars, temptrst_vars, &
aerosol_vars, waterstate_vars, waterflux_vars)

num_nolakec, &

! fi

fi and bo ds control indexi >f loops
type(bounds type) , intent (in) bounds
integer , intent (in) :: num_nolakec
integer , intent (in) filter_nolakec(:)
, intent (in) :: num_nolakep
’ lntent(ln) filter_nolakep(:)

! iables, str
type (canopy_st_type) ,
type (water_flx_type) ,

intent (in)
intent (inout)

canopyst_vars
: waterflux_vars

hierar

associate( &

pgridcell => veg_pp%gridcell, &

pcolumn => veg_pp%column, &

elai => canopyst_vars$%elai_patch, &
gflx_snow_pft => waterflux vars%$gflx_snow_pft, &

gflx_snow_col => waterflux vars$gflx_snow_col, &
h2o0soi_ice_liqg => waterstate_vars%$h2osoi_ice_liqg, &

% loop

1, num nolakep

! filters select based on
p = fllter _nolakep (f)

S across

underl

h2ocanmx = dewnmx (p) * (elai(p) + esail(p))
gflx_snow_pft(c) = forc_snow(c)
end if
end do ! (end pft loop)

variables to col

call pZC(bounds, num_nolakec, filter_nolakec, &
gflx_snow_pft (bounds%begp:bounds%endp), &
gflx_snow_col (bounds%$begc:bounds%endc)

level loop

num_nolakec

I filters select based on underly

c filter_nolakec(f)

[

e
o]

~es across the
g = cgridcell (c)

! kernel:
snow_level = ...
h2osoi_lig(j,snow_level) = ...

SnowWater

end do
end associate
end subroutine CanopyHydrology
end module CanopyHydrologyMod

reduction operation. The enucleation process for this example
produced several physics kernels and the reduction kernel.

Second, module-level regression tests using the extracted
kernels were designed and implemented. These tests consisted
of a complete, stand-alone driver which loads input data
previously saved from a full-system run and writes output data

Listing 2. Refactored Kernel Implementation

template<typename Array_t>
void CanopyHydrology_SnowWater (const double& dtime,

const ints ltype,

const inté& ctype,

int& snow_level,

doubles snow_depth,

Array_t swe_old,

.

snow_level = ...
swe_old[snow_level] = ...

for prognostic variables which can be tested for regression.
The approach of extracting the needed data to drive a single
module has previously been identified as a viable strategy to
expand ELM’s testing framework [16]. The granularity of the
regression tests fits the layout of the original CanopyHydrol-
ogy module, which comprises a few computational kernels
executing a complete set of process physics for a single
sub-system. A separate, stand-alone python test harness was
written to compare output to the gold standard, enabling tests
in multiple programming languages and models. In addition
to the original extracted Fortran kernels, the kernels and test
driver were also converted to C++.

Third, a series of mini-apps using different programming
models was implemented. Template metaprogramming was
used for the C++ versions of the kernels to facilitate the
implementation in different programming models. Several
kernels accept arrays of doubles and other primitives; by
templating the kernel on array type (see Listing 2),
kernels are able to accept “array-like” objects including
Kokkos: :View<>, Legion::FieldAccessor<>, and
a simple container based on std: :array<>. The require-
ments on the container are simply that it provides an accessor
operator[] and that it have view semantics, i.e. that copy
construction provides a shallow view of the data, not a deep
copy. The latter allows temporary values such as subviews to
be passed to the kernel (as opposed to accepting the array
by non-const reference, which would require first storing an
Ivalue). This allows a single implementation of the kernel to
be used by a variety of programming models, while being
identically used by simple, CPU-only implementations for
testing. Much like we wish to abstract kernel implementation
from kernel execution, we wish to abstract kernel testing from
kernel execution testing; this design supports that goal. The
developed mini-apps included multiple languages for both the
kernel and mini-app driver, including Fortran-only, C++ only,
Kokkos, and Legion (see Table III). The remainder of the paper
describes our experience in adopting Kokkos and Legion, their
suitability for this application, and their ease of adoption.

IV. PERFORMANCE PORTABILITY THROUGH KOKKOS

Demands of predictive understanding of land surface pro-
cesses across the globe requires an immense amount of compu-
tational power. Environmental conditions on the land surface
vary across scales, and gradients in things like water table
depth and vegetative land cover vary over scales of meters to



TABLE I
IMPLEMENTED AND NOT-IMPLEMENTED COMBINATIONS OF KERNEL
LANGUAGE AND MINI-APP PROGRAMMING MODEL

Fortran kernel =~ C++ kernel
Fortran mini-app v ot
C++ mini-app v v
Kokkos OpenMP v v
Kokkos Cuda %) v
Legion mini-app a2 v

1. While this combination is clearly possible, it was not of interest.
2. This combination is possible through accessing Legion’s raw
pointers and ensuring that mapping from geometric region to physical
region is done under a known, specific layout.

kilometers. Next-generation land surface models must leverage
novel architectures in order to achieve sufficient performance
in terms of “model years per wallclock hour,” the preferred
metric for climate code performance.

As architectures become more heterogeneous in terms
of both processing units and memory, ensuring reasonable
performance at large scale across a range of architectures
becomes increasingly difficult. Critically, device and memory
are interwoven; efficient performance requires data layout that
is consistent with the expectations of the device. Kokkos is a
programming model designed to abstract memory and device,
allowing users to write code that can, through the use of
template specializations for individual lower-level libraries and
architectures, achieve some level of performance portability
across architectures [3], [7], [17]. Kokkos is designed to target
complex node architectures with N-level memory hierarchies
and multiple types of execution resources. It currently can
use OpenMP, Pthreads and CUDA as backend programming
models.

A. Wrapping ELM kernels within Kokkos

The five ELM kernels identified were straightforwardly
wrapped within two Kokkos kernel launches, one correspond-
ing to the parallelism across PFTs and then restricted to
columns via a parallel reduction, and the other a separate
launch across columns (see Listing 3). The former demon-
strates Kokkos’ ability to represent hierarchical parallelism.
First, thread teams are constructed, one for each water column.
Each team does a parallel reduction, executing two kernels and
performing the restriction operation.

Both Fortran and C++ implementations of the underlying
kernels were successfully wrapped for use in Kokkos. To wrap
the Fortran kernels, the ISO_C_BINDING intrinsic module
was used to ensure primitive data types. Then, for kernels that
must be passed arrays of memory, Views with specified layout
(LayoutRight) data access are used to ensure that subviews
of the 1D slice of 2D data are known to be contiguous in
memory. This allows the kernel to pass a raw pointer to the
Fortran kernel. We note that this eliminates Kokkos’s ability to
lay out arrays in memory to match the memory model of the
device. This approach would hurt performance on a machine
whose device preferred coalesced memory access patterns.
However, as the kernels themselves were implemented in

Listing 3. Kokkos Driver
// view in D

typedef View<doublex>

ion 1
on, 1D

Vector_t;
Vector_t forc_snow("forc_snow", n_columns);
Vector_t gflx_snow_col ("gflx_ snow", n_columns);

;

// view instantiation, 2D

typedef View<doublex+> ViewMatrixType;

ViewMatrixType elai("elai", n_columns, n_pfts);

ViewMatrixType gflx_snow_pft ("gflx_snow_pft",
n_columns, n_pfts);

ViewMatrixType h2osoil_liqg("h2osoi_liqg",

n_columns, n_lev_soil);

// evaluate Inter tion and reduction kernels

typedef TeamPolicy<> team _policy;

typedef typename team _policy::member_type team_type;

parallel_for (team_policy(n_columns, AUTO()),
KOKKOS_LAMBDA (const team_type& team)

{

size_t c = team.league_rank() ;

double sum = 0;

parallel_reduce (TeamThreadRange (team, n_pfts),

[=] (const size_t& p, double& lsum) {
ELM: : CanopyHydrology_Interception (

forc_snow(c), elai(c,p),
gflx_snow_pft(c,p), ...);

lsum += gflx_snow_pft (team.league_rank(),p);
}, sum);
gflx_snow_col (team.league_rank()) = sum ;
}
// eva te SnowlWater kernel

parallel_ for (n_columns,
KOKKOS_LAMBDA (size_t c)
{
ELM: :CanopyHydrology_SnowWater (gflx_snow_col (c),
subview (h20so0i_1liqg,c,ALL), ...);

Fortran, no effort was made to get this combination working on
GPUs. Alternatively, the C++ kernels were implemented and
tested on both cached and coalesced memory access patterns,
on multi-threaded CPU-only and GPU architectures.

B. Observations on the use of Kokkos

Kokkos seems a sufficiently mature programming model
for adoption by application developers with limited device
porting experience. Bootcamps are increasingly available, and
one training session was sufficient to understand appropriate
design patterns. Examples, slides, and the Kokkos wiki provide
support and documentation for simple usage. The development
team of Kokkos is thriving, and clearly making efforts to
support the adoption of the code by a wide range of application
developers.

Kokkos enables performance portability by abstracting an
application’s data and data layout from the execution of func-
tions on that data. This abstraction encourages the application
developer to separate what is being executed from how and
where it will be executed. We found that this data model
supports developers in designing code that looks more like
the underlying math and physics and is more reusable across
applications. For instance, one goal of this work is the ability
to treat ELM physics capability as a library of mathematical
functions that are independent of the data model upon which
those functions are applied. ELM’s hierarchical data structure
(Figure 1) assumes water columns cover scales much larger
than the scale of vegetation variability. Therefore, the column



contains multiple plant functional types, each assigned a
fraction of the surface area of the water column. Alternatively,
regional and local land surface models may resolve water at
a much higher resolution, at which point only a single plant
functional type per water column is appropriate. While the
evaluation process and loops must be changed, the underlying
physical kernels are still appropriate. By abstracting the data
model from the kernel, kernels can be reused by different
models, each with their own data model. While this is cer-
tainly possible without Kokkos, the data model of Kokkos
encourages more flexible application design.

In this work, we found that the flexibility of generating
different types of subviews to be useful. For instance, subviews
which select a single row or column of two-dimensional arrays
were used to pass one-dimensional arrays to kernels. Subviews
can also be used to take a subset of a row or column;
this will be useful in dealing with the flattened hierarchy
described in Figure 2. Finally, Of f setViews offer the ability
to, like Fortran, change the range of indices into an array.
The ability to arbitrarily set the index of the “Oth” entry
in an array is used extensively in physics code in general
and ELM in particular. For instance, water column data in
ELM ranges from -n_level_snow to n_level_soil,
with non-positive indices indicating “above ground” cells and
positive indices indicating “below ground” cells. While this
was not leveraged here in order to allow consistent kernels
across Legion and Kokkos, Of fsetViews offer great poten-
tial to ease refactoring Fortran code for C++ and Kokkos.

One missing capability that would be useful in this appli-
cation is the ability to construct “filtered” or “random access”
subviews. Often ELM code evaluates loops over a “filtered”
set of columns, e.g. “for each column in a land unit that is
of type VEGETATED.” While it is unclear whether forming
the subviews would enable architecture optimizations relative
to the current approach of introducing an if statement at the
beginning of each kernel, it would provide a more concise
and flexible abstraction. Furthermore, while “ragged” two-
dimensional array views seem to have been implemented via
the Kokkos kernels package for use in compressed-row-storage
spare matrices, they are not a part of Kokkos proper. Some
documentation and better cross-referencing across multiple
efforts in the Kokkos community would make the adoption
of Kokkos easier for application developers.

V. LOAD BALANCING AND TASK PARALLELISM THROUGH
LEGION

One of the difficulties inherent in Earth System modeling
in general and land surface models specifically is their sheer
complexity. Processes include aspects of physics, biology,
chemistry, economics, and social sciences. This rich set of
processes are required to capture even the broad strokes of
the evolution of the Earth’s climate.

Task parallel programming models break up this complex-
ity into a number of smaller tasks and their dependencies,
then automate the formation and executiom of the associ-
ated dependency graph. The dependency graph, a directed,

acyclic graph which describes both data dependencies and
execution order, exists implicitly in all applications, but is
typically mapped to computational resources explicitly by the
developer. Task parallel programming models acknowledge
that, in complex applications like land surface models, it is
difficult if not impossible for a single developer to understand
and reason about this graph. By providing tools for explicitly
forming the dependency graph, the task scheduler can then
identify opportunities for parallelism that may not have been
recognized by the developer. As applications become more
complex, the ability to recognize and exploit all available
parallelism is crucial to ensure strong scaling. Thanks to this
unique ability to expose parallelism in automated ways, task
parallel runtimes are becoming more common in multiphysics
applications [18]-[21].

The Legion Programming System is a task-based, data-
centric programming model which provides abstractions to
describe dependencies and locality of program data, along
with a runtime, Realm, which asynchronously schedules and
maps tasks and data onto devices and physical memory
spaces. Legion provides a number of features which makes
it appealing for current-day, complex applications. Most no-
tably, it facilitates a data model, the LogicalRegion, from
which persistent data can be mapped. The LogicalRegion
combines a multidimensional indexed space (or listing of data
entries) with a field space (or listing of variable names and
types). It may be partitioned in a variety of ways, and each
field and partition can then be the target of a data dependency.
Tasks are added to the dependency graph with an arbitrary
set of arguments and a collection of permissions (e.g. read-
only, read-write, etc) on the LogicalRegion’s fields, and
provide an arbitrary collection of return types as a Future,
or handle for ensuring the completion of the task. Permissions
can be extremely fine grained, depending upon a partition and
a subset of the field space.

Tasks are added to the dependency graph in apparently
sequential order which implies dependencies; the task runtime
allocates resources to respect these dependencies and permis-
sions [5], [22], [23]. The LogicalRegion is mapped onto
(distributed) memory to form PhysicalRegions which are
persistent across tasks, but can be moved across devices as
necessary by the scheduler. The management of this mapping
is the purview of the runtime, but can be controlled and guided
by the application as needed. Mapping and therefore perfor-
mance is independent of correctness, allowing the developer
to focus on one at a time.

A. Considerations of Legion for ELM

Practically, Legion is a programming model that replaces
MPI, but places stronger requirements on an application’s
data model. Specifically, as the scheduler must be able to
instantiate the PhysicalRegion and move partitions of the
PhysicalRegion on and off of various devices, applica-
tions may not control (persistent) data, instead describing the
data within the confines of the LogicalRegion. ELM’s
existing data model (Figure 2), which uses integer indices



to map between levels in the hierarchy, is well-suited for
Legion’s data model. Alternative approaches, such as pointers
across levels of the hierarchy, would have been much more
difficult to refactor for Legion. The key to ensuring limited
communication and efficient code in Legion, then, is to ensure
that partitioning is specified to match the access pattern of each
task.

For ELM, this means that restrictions across hierarchy
levels are most efficiently done if all needed data for a
given restriction is in the same part of a partition. Further-
more, Legion’s data parallelism and partitions are conceptually
“coarse-grained.” Together, these suggest our approach for
this mini-app, which is that only the top level (grid cells)
are partitioned, and each level of the hierarchy is partitioned
consistently. Naive, independent partitioning of each level
would result in a much denser data dependencies, as each
restriction could depend on multiple chunks in the partition.
Consistent partitioning ensures that reductions across the scale
hierarchy can depend on only a single chunk, and careful
mapping can ensure this is done locally on a single device
without data movement, as would occur in a typical MPI
implementation.

This partitioning is an over-decomposition; careful thought
will be required at scale to ensure that the chunk size is large
enough to hide Legion’s overhead but small enough to allow
efficient load balancing. Unlike a typical MPI implementation,
over-decomposition of the grid cell level allows opportunities
for load balancing to occur without user intervention.

B. Wrapping ELM kernels within Legion

To explore the use of Legion within ELM, a mini-app that
passes regression tests was developed. The above set of C++
kernels was wrapped as Legion tasks and the mini-app was
implemented within a “top level task™ (see Listing 4). This
task constructs LogicalRegions for the ELM data model,
including partitioning consistent across levels of the hierarchy.
It then loops in time, sets up permissions, and launches tasks
for each kernel. An example of the task implementation of
the restriction task is shown in Listing 5. The tasks create
accessors of the correct type, then loop over each element
(i.e. column or PFT) and call the kernel.

We note that the templated kernel can match “subviews”
into the Legion accessor, allowing the same templated kernel
to match Legion accessors and Kokkos views/subviews.

C. Observations on the usability of Legion

First, we note that Legion provides a rich set of tutorial
material, documentation, mailing list, and community support.
In our experience, the development team was responsive
and friendly, and happy to explain and help new users. A
huge amount of recorded video including Legion tutorials
are available. This community support suggests a thriving
community, which makes any code base both easier and more
fun to develop.

Furthermore, we were pleased to find that Legion discovered
potential concurrency that was not obvious, even in such a sim-
ple mini-app. The dependency graph constructed dynamically

Listing 4. Legion Top Level Task
void top_level_task(const Task xtask,
const std::vector<PhysicalRegion> &regions,
Context ctx, Runtime *runtime)
{
// can state_vars
auto phenology_fs_names =
std: :vector<std::string>{ "elai", ... };
Data<2> phenology ("phenology", ctx, runtime,
Point<2>(n_columns_g, n_pfts),
Point<2> (n_parts, 1),
phenology_fs_names) ;

'pe variables on col

// water_ flx_ t

auto flux_col_names = std::vector<std::string>{
"forc_snow", "gflx_snow_col", ... };

Data<l> water_flx_col("flux", ctx, runtime,
Point<l>(n_columns_g),
Point<2>(n_parts),

es) ;

// wa r 1l es on 5
// wate Iilx £ n 1S

auto flux_pft_names = std::vector<std::string>{
"gflx_snow_pft", ... };

Data<2> water_flx pft ("flux", ctx, runtime,
Point<2>(n_columns_g, n_pfts),
Point<2> (n_parts, 1),
flux_pft_names);

// soil variables >0 2. E

auto soil_fs_names = std::vector<std::string>{

"h2o0so0i_1lig", ... };

Data<2> soil("soil", ctx, runtime,
Point<2>(n_columns_g, n_lev_soil),
Point<2>(n_parts, 1),
soil_fs_names);

s x soil cells

space for

surface.color_domain;

ation task

"reate a color indexed launching.

() .launch (ctx, runtime,
color_space, phenology, water_flx pft,
water_flx_col);

// launch red on task

SumOverPFTs () .launch (ctx, runtime, color_space,
water_flx pft, "gflx_snow_pft",
water_flx_col, "gflx_snow_col");

// launch SnowWater ev.

1ch ate ev ron t

/ task
CanopyHydrology_SnowWater () .launch (ctx, runtime,
color_space, water_flx_col, soil);

by the Legion runtime and shown in Figure 3 makes clear that
the CanopyHydrology_FracWet and SumOverPFTs re-
striction tasks can be executed independently. We find it quite
promising that, even within such a limited fraction of the
overall code base (less than 10% of all anticipated tasks) and
even within a single module which one would expect code
to be more tightly co-dependent, concurrency exists. While
it is likely that these concurrencies could be discovered by a
careful analysis of the code, this potential is a powerful result
of the adoption of Legion.

Legion is, by intention, a low-level programming model.
Significant amounts of boilerplate code is repeated in multiple
places and in multiple forms to specify the same thing.
For instance, the order of regions within the task must be
specified in at least two places as a task’s data is packed
and unpacked: once at the launch of the task (i.e. adding the
dependency to the graph), and once within the task itself (i.e.
constructing an accessor of the correct type). Each of these is
an opportunity for programmer error, and these “consistency
bugs” are typically caught only at runtime.



Listing 5. Legion SumOverPFTs Task
FutureMap

SumOverPFTs: : launch (Context ctx, Runtime *runtime,

Rect<l>& color_space,
Data<2>& pft, const std::stringé& summand,
Data<l>& col, const std::stringé& sum)

auto args = std::make_tuple (NULL);

ArgumentMap arg_map;

IndexLauncher launcher (taskid,
TaskArgument (&args,

color_space,
sizeof (args)), arg_map);

// —— permissions on input
launcher.add_region_requirement (

RegionRequirement (pft.logical_partition,
pft.projection_id, READ_ONLY, EXCLUSIVE,
pft.logical_region));

launcher.add_field (0, flux.field_ids[summand]) ;

// permissions on output
launcher.add_region_requirement (
RegionRequirement (col.logical_partition,
col.projection_id, WRITE_DISCARD,
EXCLUSIVE, col.logical_region));
launcher.add_field(1l,surface.field_ids([sum]);

// —— launch the interception
return runtime->execute_index_space (ctx,

}

launcher) ;

void
SumOverPFTs: :cpu_execute_task (const Task =*task,
const std::vector<PhysicalRegion> &regions,
Context ctx, Runtime =xrt)
{
// get accessors
using AffineAccessorRO2 = FieldAccessor<READ_ONLY,
double, 2, coord_t,
Realm: :AffineAccessor<double, 2, coord_t> >;
using AffineAccessorWOl = FieldAccessor<WRITE_DISCARD,
double, 1, coord_t,
Realm: :AffineAccessor<double, 1, coord_t> >;
const AffineAccessorRO2 summand (regions([0],
task->regions[0].instance_fields[0]);
const AffineAccessorWOl sum(regions[1],
task->regions[1l].instance_fields[0]);

LogicalRegion lr = regions[0].get_logical_region();
IndexSpaceT<2> is(lr.get_index_space());
Rect<2> bounds = Domain (rt->get_index_space_domain (is));

for (int g = bounds.lo[0]; g
double sum_1 = 0 ;
for (int p = bounds.lo[l]; p
sum_1 += summand[g] [p];
}

sum[g] = sum_1 ;

!= bounds.hi[0]+1; ++g) {

!= bounds.hi[1]+1; ++p) |

}

Furthermore, Legion data models require the composition
of many conceptually independent classes. For example,
constructing a partition of a LogicalRegion requires
an IndexSpace, FieldSpace, LogicalRegion,
IndexPartition, FieldAllocator, and
LogicalPartition, along with names and IDs of
each of these to track for debugging. This abstraction
provides a richness of features that is very welcome, but
conceptually these objects can easily be encapsulated under
a common utility. Legion makes no attempt to hide the fact
that it is a low-level model — higher level abstractions are
realistically required to ensure efficient code development.

Instead, Legion is co-developed with the domain specific
language Regent [24], which enforces consistency in the
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Fig. 3. Legion event graph of the four kernels and one reduction
task, each split via indexed launch into four chunks. Common tasks on
different chunks are colored the same. Potential concurrency was ex-
posed in the third column, where the dependency graph shows how the
CanopyHydrology_FracWet and SumOverPFTs tasks are independent.
Note that, to simplify the presentation, this graph has been stripped of all setup
and I/O and only one time step is shown.

language design. However, developing application code in
Regent comes with downsides. Specifically, interoperability
of Regent with legacy tasks (written in C++) and embedding
task scheduling within legacy control code (written in C++)
is difficult if possible. Other approaches, such as Flexible
Computational Science Infrastructure (FleCSI) [21], offer a
complete abstraction layer for multiphysics applications, for
which Legion is one backend. This is an intriguing possibility
for future applications, but again is not well-suited for refactor-
ing existing applications as it requires the complete adoption
of the FleCSI framework, including mesh data abstractions.

Instead, it seems likely that a significant amount of the
boilerplate required by Legion could be hidden in a mid-
dleware layer, enabled by C++ template metaprogramming,
which would be useful to a wide range of applications. Indeed,
even for this simple exercise, a data class to encapsulate
LogicalRegions and their LogicalPartitions was
implemented straightforwardly. While it is unlikely that such
an approach will hide all of Legion’s complexity, additional
helper classes in C++ to encapsulate permissions, accessor
construction, and other common low-level boilerplate would
be a welcome addition to the Legion community landscape.



VI. CONCLUSIONS AND DISCUSSION

In this work we looked to develop an approach for refac-
toring a complex MPI-only code for hybrid architectures and
extreme parallelism. We described an enucleation process by
which kernels from the Energy Exascale Earth System Model’s
Land Model were isolated from their calling code, and pack-
aged as a separate suite of physics process functions for use in
a variety of applications. We showed how this approach led to
a robust, testable capability that could be used with a variety
of programming models. We then implemented a series of
mini-apps, exploring the use of Kokkos to abstract architecture
and Legion to identify concurrency and schedule tasks across
resources. While not a new concept, this enucleation approach
is not typical of application software, but provides multiple
advantages for both adoption new programming models and
for application software design. Libraries that encourage ap-
plication software development in this form are emerging [?],
[19], [21], and may become more common.

In this work, we found that Kokkos and Legion are two
good examples of the maturation of programming models.
Both benefit from a culture of developer-user interaction and
support, and adoption is supported by a wide range of tutorials
and introductions to enable application developers to under-
stand the underlying concepts. While both would benefit from
more complete documentation and a richer set of examples,
both are ready for adoption by application developers. Both
encourage the development of clear interfaces for physical
processes which are data-structure agnostic, and the explicit
identification of a data model and data access patterns. By
exploring multiple programming models simultaneously, we
feel comfortable that our approach has some robustness to
ensure that investments in refactoring will not be premature.

While it is unclear what specific programming models for
scientific applications will stand the test of time, it seems clear
that some features of those models have emerged. Application
developers would benefit from refactoring efforts to adopt
some of these features. Specifically, future application codes
must look more functional and less object-oriented than most
codes today, with explicit data models which are abstracted
from the mathematical processes evaluated on that data. De-
pendencies must be more explicit; by being explicit about
limiting permissions and interfaces to only data that is actually
used (as opposed to passing coarse-grained data structures),
programming models will be able to infer and optimize the
execution of these processes. By pushing unit and system
level tests to finer granularity, application developers will
gain invaluable knowledge about the appropriate granularity of
processes while building the needed infrastructure to support
refactoring efforts. Finally, we find that these changes will
encourage more flexible, robust code which better enables
scientific exploration of process uncertainty and better serves
the science community.

While programming models for pushing “beyond MPI+X”
are an active and dynamic research area, we find them to be
rapidly maturing to the point that application development

teams without programming model experts should feel em-
powered to explore and embrace them.
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APPENDIX
Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

A series of mini-apps which leverage a common library
of application code and a variety of programming models
were described. Design and testing of these mini-apps were

reported.

ARTIFACT AVAILABILITY

Software Artifact Availability:: All author-created soft-
ware artifacts are maintained in a public repository under an
OSI- approved license (BSD-3 clause).

Hardware Artifact Availability:: There are no author-
created hardware artifacts.

Data Artifact Availability: : There are no author-created
data artifacts.

Proprietary Artifacts:: None of the associated artifacts,
author-created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available::
https://code.ornl.gov/uec/elm_kernels/

CONSIDERATION FOR SCC:
No.

BASELINE EXPERIMENTAL SETUP, AND MODIFICATIONS
MADE FOR THE PAPER

Operating systems and versions:: Tested on Ubuntu,
0OSX

Compilers and versions:: Tested on Gnu compiler col-
lection (v7+), Apple Clang compilers (clang-1000.10.44.4)

Applications and versions:: As presented in hash
1b8ab9c66del3200e79807€a£93875db0fafbbaa.

Libraries and versions::

Kokkos, as built Trilinos,
https://github.com/trilinos/Trilinos, hash
ab5f7683012ec5567679a5d065£91dcbe553c24a8.
Legion, https://github.com/StanfordLegion/
legion, as built from hash
253ee9%9e3a44£f3c4843b4e83cb6b8e37daleSlcfad.

from

ARTIFACT EVALUATION

Verification and validation studies:: Regression tests for
correctness of all mini-apps relative to original refactored
application, as described in the manuscript.



