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Land surface models need calibration to improve the prediction

accuracy

 Energy Exascale Earth System Model (E3SM), land model (ELM) simulates terrestrial water,
energy, and biogeochemical processes in terrestrial surfaces.

 Itis an important tool for improving our predictive understanding of ecosystem responses to

climate change.
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There are significant discrepancies
between ELM model simulation
with default parameter values and
observed NEE at MOFLUX forest
site. Model calibration is needed for
improving prediction.

Gu et al., JGR, 2016

 ELM involves 65+ unknown parameters, and the use of default parameter values has shown large

model discrepancy from site observations.

« Thus, ELM calibration is required at every site for improving the prediction accuracy globally.



Model calibration and uncertainty quantification (UQ) are
computationally expensive

» Calibrating the ELM model is challenging because of its strong nonlinearity and unconstrained
parameters, which requires UQ of parameter estimates.

« Estimating uncertainty in nonlinear inverse problems is computationally demanding.
» Several methods have been proposed to reduce the computational cost.

‘ Surrogate Modeling | Invertible Neural Network Diffusion-based UQ

Build a fast surrogate of the ELM, INN solves UQ problem directly based Diffusion models are generative
and then evaluate the surrogate in on ELM model simulation samples ML method.
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Surrogate modeling to reduce computational time of UQ

Two strategies: build an accurate surrogate model using limited ELM simulation samples
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Methods to improve computational efficiency of ELM calibration

‘ Surrogate Modeling |

Build a fast surrogate of the ELM,
and then evaluate the surrogate in
the standard UQ process
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* Key is to build an accurate
surrogate using limited ELM
simulation samples.

 Dimension reduction, BNN,
physics-informed ML, etc.

e Evaluating the surrogate
model in traditional UQ
process to reduce costs.

‘ Invertible Neural Network |

INN solves UQ problem directly based
on ELM model simulation samples

forward process: x — y
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inverse process: [y,z] — x

* INN learns bijective mapping
between inputs and outputs.

e Evaluating the trained INN
backwards produces parameter
posterior samples.

‘ Diffusion-based UQ \

Diffusion models are generative ML
method.
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It includes two processes.

The forward diffusion process
adds noise to the target
distribution and transform it to
a standard Gaussian.

The reverse denoising process
transforms the standard
Gaussian samples to the target
parameter posterior samples.



Invertible neural networks (INN) to efficiently solve UQ

« NN for forward model * NN can be problematic to * We developed INN by
approximation, learns x learn y = x mapping due introducing a latent variable
> y mapping. to nonunique solutions of z such that the mapping

x for a giveny. between x and [y, z] is
O O bijective.
Q- p | * INN learns the bijective
O /[ ‘ ‘ @) O mapping.
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INN solves both forward and inverse UQ efficiently

* INN is a class of networks that provide bijective mappings between inputs and outputs.
* INN solves both probabilistic inverse problems and forward approximations efficiently.

* Building block of INN is the affine coupling layer;

INN

* INN learns bijective mapping between inputs [ul, u2] and outputs [v1, v2];
* These affine coupling layers are chained to construct deep INNs.
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Lu et al., ICLR 2022.
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 We train INN on the forward process.
Latent heat « Evaluate the trained INN backwards for

fluxes parameter uncertainty quantification.
Latent  In application to ELM model calibration, INN
variable produced parameter posterior distributions like

those produced by MCMC but with significantly
enhanced computational efficiency.



Methods to improve computational efficiency of ELM calibration

‘ Surrogate Modeling | ‘ Invertible Neural Network | ‘ Diffusion-based UQ |

Build a fast surrogate of the ELM, INN solves UQ problem directly based Diffusion models are generative ML
and then evaluate the surrogate in on ELM model simulation samples method.
the standard UQ process o

- .

ML
°e ﬁ surrogate
<K ) '«:a,-,;?

P00

Input ensemble

Denoising

« p(x1)
(\C}avl{'&?&vgisﬁ}’vﬁb

Diffusion

p(Xo)

PR forward process: x — y

"""""""" - } Model

Yy outputs
M REP'IR  |nvertible Neural Net N
Inputs } Latent

variable

inverse process: [y,z| — x

Output ensemble .

It includes two processes.
e [tislimited to INN structure.

e Surrogate modeling demands * The forward diffusion process

an accurate surrogate across *

the entire parameter space.

* It requires a new MCMC
simulation whenever
likelihood functions vary.

The dimension of [x] and [y, z]
should be the same.

The training of INN is unstable,
heavily dependent on the
hyperparameters.

adds noise to the target
distribution and transform it to
a standard Gaussian.

The reverse denoising process
transforms the standard
Gaussian samples to the target
parameter posterior samples.



Score-based diffusion models to estimate p(X|Y =) for UQ

N Forward diffusion process (fixed) The forward process is given by a forward stochastic differential equation (SDE):

dZt = b(t)tht + O'(t)th with ZO = XlY and Zl = Z, (5)

where Zj is the initial state and Z; is the terminal state, W; is a standard d-dimensional
Brownian motion, b(t) is the drift coefficient, and o(t) is the diffusion coefficient. The
backward process is given by an associated reverse-time SDE:

é " - dZ, = [b(t)Z, — o> (t)S(Z,, 1) dt + o(t)dB;, with Zy = X|Y and Zy = Z,  (6)
q(xo) .- ; q(xr)
ﬁ ﬁ ﬁ % ‘ij » A where B; is the backward Brownian motion and IS (Z;,1) is the score functionl
Xp .o X4 I X7
Reverse denoising process The score function in Eq. (6) is defined by

S(Ztvt) = Vz 1ng(Zt)7

which is uniquely determined by the initial distribution p(Zy) and the coefficients b(t)
and o(t) in the forward SDE of Eq. (5). Substituting

W2 = [ o2 Z)iza = [ (21 Z0p(Z0)izs

+»» Traditional score-based diffusion model uses a NN to learn the score function;
* The training data are generated by solving the forward process;
* It requires storing many stochastic paths of the forward SDE;
* Itis computationally expensive and memory intensive;

* With the learned score function, it solves a reverse SDE repeatedly to generate targe samples X|Y;
* For each sample generation, it requires solving the reverse SDE for many time steps.



Our Diffusion-Based Uncertainty Quantification (DBUQ) method

* QObijective: draws samples to approximate posterior
distribution of parameter X given observed vy,

p(X|Y =y) x p(Y =y|X)p(X)

 DBUQ formulates a generative model F to draw the target
samples,

XY = F(Y,Z;0)

« DBUQuses a NN to estimate F using training samples; % Use a NN to learn the relationship

between [Y, Z] and X]Y;
° After tra|n|ng, th|S NN can evaluate Standard Gaussian . XlY is the parameter of interest;
samples, Z, to quickly generate the desired parameter

_ * Yis the observation variable;
posterior samples X[V atY =y

e Zisthe standard Gaussian variable.

\/

** The generation of target samples of X|Y is computationally and memory efficient;

\/

*%* For any given observation data, the NN can generate corresponding parameter
posterior samples without the need for re-training.




Our Diffusion-Based Uncertainty Quantification (DBUQ) method

Reverse SDE:
* Objective: Generate training samples to train the NN and

: : dZ, = [b(t)Z, — 0*(1)S(Zy, t)] dt + o(t)dB, with Zy = X|Y and Z; = Z,
learn the relationship between Z and X|Y. o= [b(t) 2 = *()5(Ze,t)] dt + o(t)dBy - with Zo = XY and 2,
. . . The reverse SDE transport model

* Inthe reverse SDE, the relationship between Z and X|Y is ‘ | )

not deterministic, which means it cannot be learned. NN e ﬁetarget -

g:ui::iair W ‘ distribution - E

* Through some derivation, we found the listed ODE solves al - — £

the same distribution of X|Y, and it also provides a T-1 oo " thestteatTl

unique mapping between Z and X|Y.

o Reverse ODE:
* Thus, we solve the ODE to generate the training data.

: 1 :

* To solve the ODE, we need to estimate the score function dZy = |b(t)Z; — 502(75)5(&,1?)} dt with Zo = XY and Z; = Z,

S, which involves an integral.

The reverse ODE transport model
S(Z,t) ==V, logp(Zy). ] |
— 1 ¥ C
p(Zt) = /p(Zt,Zo)dZ() = /p(Zt|Zo)p(Zo)dZO Thestan.dard \\ = The target ‘ ::j «
Gaussian distribution il

* We use Monte Carlo (MC) method to estimate the -1 ™0 | Thesmeatr-l

integral based on prior samples Do = {(5,v)} The ODE sh hand uni ine bet 7

generated from the ELM model simulations. c shows smooth and unique mapping between

and X|Y;

* We solve ODE to generate training samples to learn the
mapping between Z and X| .




Our Diffusion-Based Uncertainty Quantification (DBUQ) method

Our DBUQ method for parameter uncertainty quantification

Input: Prior sample set Dy, o, = {(xj,yj)}jzl;
Output: Trained generative model F(Y, Z;60);

Procedure:
l.form=1,.... M

» Estimate score function using Monte Carlo estimation through Eq. (13)—-(15);
« Solve the ODE in Eq. (16) with the estimated score function;

» Obtain one sample (z,,, Ym, zm) In the dataset Dy er;

end

2. Train a NN to approximate the generative model X = F(Y, Z;0) using the train-

ing data Diabel = {(Zm, Ym, 2m ) }M_;.

Generate parameter posterior samples: for a given observation y, evaluate the trained
F' at standard Gaussian samples Z to generate parameter posterior samples to approx-
imate the target distribution p(X|Y = y)




DBUQ method is computationally and memory efficient

Traditional score-based diffusion models Our DBUQ method

Computationally expensive, memory-intensive Computationally and memory efficient

. . Amortized Bayesian inference
%* Use a NN to learn the score function;

*» Formulate a supervised learning problem to

* The training data are generated by solving the :
estimate the sample generator F;

forward SDE process;

* It requires storing many stochastic paths of
the forward SDE, which is computationally
expensive and memory intensive;

» After the generator is trained, it can quickly
generate numerous parameter posterior
samples for any given observations;

% Solve a reverse SDE repeatedly using the * (Sjo!(veta J:ev.erseNCI)\lDtE to f.ene{aﬁth; training
learned score function to generate targe dtatotraina O estimate the 1,
samples; * Computationally and memory efficient as
« For each sample generation, it requires to solving th-e ODE only needs to store the initial
solve the SDE for many time steps. and terminal states of the transport path;




An illustrative example of DBUQ

Problem Result
We use a simple 1D problem to illustrate our DBUQ method. The forward model y=1.00 y=225
g(X) in the likelihood function of Eq. (2) is defined by 12 — e s — o
g(X) =X21 N 0.6
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where the prior distribution of X is defined by a uniform distribution U([—2,2]) in the
domain [—2,2]. The observation variable Y is defined by

Density function
Density function
<)
s

o
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L
o
N

Y =g9(X) +-¢, >
0.0 0.0

where ¢ follows the Gaussian distribution N'(0,02) with o = 0.1. B 2 - ’

Procedure * Multimodal distributions can be

Raw data Labeled data The generator X = F(Y,Z; 0) common for e_arth .SyStem model

Dprior = {(25,45)}j=1 in Eq. (4) Diavel = {(Tms Yms zm) ey in E. (17) parameter estimation;
* Itis challenging for UQ methods to
Diffusion NNtraining _ capture all the possible modes;

model |

X o  DBUQ accurately approximates the
target bi-modal distributions;
 DBUQ is computationally efficient,

taking < 2min for this problem.




Apply DBUQ to improve ELM calibration

* Problem: Use DBUQ to estimate 8 ELM parameters; Parameter Parameter
. name range
* QObservation: Annual averaged latent heat flux (LH) for 5 years at " 5.4
. . . . . roo ar =%
the Missouri Ozark AmeriFlux site in 2006-2010; s,a,o,;p [0.01, 0.05]
. ] . finr [0.1,0.4]
* Prior sample: 1000 paired samples Do = {(2;,4;)}7- frootcn [25. 60]
o PR froot_leaf [0.3, 1.5]
Two case studies: br. v Py
o Synthetic case for method verification crit_dayl [35000, 45000]
o Real observations application crit_onset_gdd Lo
« Compare DBUQ with MCMC for performance evaluation
DBUQ MCMC
* |nput: 1000 prior samples DPprior = {(z;,v5)}-1  |nput: 1000 prior samples Derior = {(2;,4;)};=1
e Qutput: a trained generator which can be quickly * Procedure: build a surrogate model on the prior
evaluated to generate target samples for any given samples, and then perform MCMC simulations on
observations; the surrogate;
 Computing time: < 10 min for solving both cases e Qutput: a set of posterior samples; For a different
* Particularly suitable for site-specific earth system observation, we need to re-run MCMC;
model calibration at a global scale due to its  Computing time: ~ 5 hours for one case to generate
computational efficiency and amortized inference. the same number of posterior samples as DBUQ.




DBUQ accurately and efficiently estimates parameter PDFs

Synthetic case |
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+* DBUQ shows high accuracy in approximating the parameter posterior distributions.
e Similar to the MCMC results, both accurately estimate the “true” parameter values with high probability.

+* DBUQ demonstrates an accurate model calibration, as the prediction samples simulated from the parameter
posterior samples are closely around the “true” observation.



DBUQ accurately and efficiently estimates parameter PDFs

Real observation case 65
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* DBUQ again shows high accuracy in approximating the parameter posterior distributions.
* Similar to the MCMC results in estimating both the marginal and joint PDFs.

*»» DBUQ demonstrates an accurate model calibration, as the prediction samples simulated from the
parameter posterior samples are closely around the observation.

*** Note, DBUQ achieves comparable accuracy with MCMC with significantly less computational time.
e DBUQ: 10 mins for all the three case studies;

e MCMC: 5 hours for one case study;
Lu et al., ICLR 2024.




Summary: advanced ML methods for efficient UQ

‘ Invertible Neural Network |

‘ Surrogate Modeling |

Build a fast surrogate of the ELM,
and then evaluate the surrogate in
the standard UQ process

a @ S
< N

ML
° @ surrogate
R .

P~

Input ensemble

Output ensemble

e Surrogate modeling demands
an accurate surrogate across
the entire parameter space.

* It requires a new MCMC
simulation whenever
likelihood functions vary.

INN solves UQ problem directly based

on

Model
inputs

ELM model simulation samples

PR forward process: x — y

"""""""" - } Model

3 outputs
X Invertible Neural Net JBESS
} Latent

variable

inverse process: [y,z] — x

It is limited to INN structure.

The dimension of [x] and [y, z]
should be the same.

The training of INN is unstable,
heavily dependent on the
hyperparameters.

‘ Diffusion-based UQ |

Our DBUQ method generates
parameter posterior samples by
evaluating the NN.

Denoising

(XO) + p(xl)

\%m&?&wiﬁaw,,.“«»

Diffusion

It can accurately quantify
parameter uncertainty.

It is computationally and
memory efficient.

It performs amortized Bayesian
inference.

It enables real-time and large-
scale model calibration and UQ.



