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• Energy Exascale Earth System Model (E3SM), land model (ELM) simulates terrestrial water, 
energy, and biogeochemical processes in terrestrial surfaces.

• It is an important tool for improving our predictive understanding of ecosystem responses to 
climate change.

Land surface models need calibration to improve the prediction 
accuracy

• ELM involves 65+ unknown parameters, and the use of default parameter values has shown large 
model discrepancy from site observations. 

• Thus, ELM calibration is required at every site for improving the prediction accuracy globally.

There are significant discrepancies 
between ELM model simulation 
with default parameter values and 
observed NEE at MOFLUX forest 
site. Model calibration is needed for 
improving prediction. 

Gu et al., JGR, 2016
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Model calibration and uncertainty quantification (UQ) are 
computationally expensive
• Calibrating the ELM model is challenging because of its strong nonlinearity and unconstrained 

parameters, which requires UQ of parameter estimates.
• Estimating uncertainty in nonlinear inverse problems is computationally demanding.
• Several methods have been proposed to reduce the computational cost.

Surrogate Modeling

• Surrogate modeling reduces 
time of a single model run.

Invertible Neural Network

• INN learns bijective mapping 
between inputs and outputs.

• Evaluating the trained INN 
backwards produces parameter 
posterior samples.

Build a fast surrogate of the ELM, 
and then evaluate the surrogate in 
the standard UQ process

Input ensemble Output ensemble

ML 
surrogate

INN solves UQ problem directly based 
on ELM model simulation samples

TEM 
parameters

TEM 
outputs

Latent 
variable

Model 
inputs

Model 
outputs

Latent 
variable

Diffusion-based UQ
Diffusion models are generative 
ML method. 

• It includes two processes.
• The reverse denoising 

process transforms standard 
Gaussian samples to target 
parameter posterior samples.
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Dimension reduction on output layer reduces NN parameters from 1000 to 100

Two strategies: build an accurate surrogate model using limited ELM simulation samples

TEM parameters

TEM outputs

Strategy I: Dimension reduction to simplify the NN structure
Input layer

Output layer

Hidden layer

Large number of spatiotemporal 
model outputs

Surrogate modeling to reduce computational time of UQ

Strategy II: BNN to improve training reliability for small data

Bayesian neural network (BNN) 
can use a small training data 
set to produce an accurate 
surrogate by avoiding 
overfitting and provide UQ.



55

Methods to improve computational efficiency of ELM calibration

Surrogate Modeling

• Key is to build an accurate 
surrogate using limited ELM 
simulation samples.

• Dimension reduction, BNN, 
physics-informed ML, etc.

• Evaluating the surrogate 
model in traditional UQ 
process to reduce costs.

Invertible Neural Network

• INN learns bijective mapping 
between inputs and outputs.

• Evaluating the trained INN 
backwards produces parameter 
posterior samples.

Build a fast surrogate of the ELM, 
and then evaluate the surrogate in 
the standard UQ process

Input ensemble Output ensemble

ML 
surrogate

INN solves UQ problem directly based 
on ELM model simulation samples

TEM 
parameters

TEM 
outputs

Latent 
variable

Model 
inputs

Model 
outputs

Latent 
variable

Diffusion-based UQ
Diffusion models are generative ML 
method. 

• It includes two processes.
• The forward diffusion process 

adds noise to the target 
distribution and transform it to 
a standard Gaussian.

• The reverse denoising process 
transforms the standard 
Gaussian samples to the target 
parameter posterior samples.
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TEM 
parameters

TEM 
outputs

Latent 
variable

• NN for forward model 
approximation, learns x 
à y mapping.

Input x Output y Input xOutput y

• NN can be problematic to 
learn y à x mapping due 
to nonunique solutions of 
x for a given y.

• We developed INN by 
introducing a latent variable 
z such that the mapping 
between x and [y, z] is 
bijective.

• INN learns the bijective 
mapping.

Input x
Output y
Latent z

Invertible neural networks (INN) to efficiently solve UQ 
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• INN is a class of networks that provide bijective mappings between inputs and outputs.
• INN solves both probabilistic inverse problems and forward approximations efficiently.

• Building block of INN is the affine coupling layer;
• INN learns bijective mapping between inputs [u1, u2] and outputs [v1, v2]; 
• These affine coupling layers are chained to construct deep INNs.

INN

• We train INN on the forward process.
• Evaluate the trained INN backwards for 

parameter uncertainty quantification.
• In application to ELM model calibration, INN 

produced parameter posterior distributions like 
those produced by MCMC but with significantly 
enhanced computational efficiency.

INN solves both forward and inverse UQ efficiently 

Lu et al., ICLR 2022. 
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Methods to improve computational efficiency of ELM calibration

Surrogate Modeling

• Surrogate modeling demands 
an accurate surrogate across 
the entire parameter space.

• It requires a new MCMC 
simulation whenever 
likelihood functions vary.

Invertible Neural Network

• It is limited to INN structure.
• The dimension of [x] and [y, z] 

should be the same.
• The training of INN is unstable, 

heavily dependent on the 
hyperparameters.

Build a fast surrogate of the ELM, 
and then evaluate the surrogate in 
the standard UQ process

Input ensemble Output ensemble

ML 
surrogate

INN solves UQ problem directly based 
on ELM model simulation samples

TEM 
parameters

TEM 
outputs

Latent 
variable

Model 
inputs

Model 
outputs

Latent 
variable

Diffusion-based UQ
Diffusion models are generative ML 
method. 

• It includes two processes.
• The forward diffusion process 

adds noise to the target 
distribution and transform it to 
a standard Gaussian.

• The reverse denoising process 
transforms the standard 
Gaussian samples to the target 
parameter posterior samples.
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v Traditional score-based diffusion model uses a NN to learn the score function;
• The training data are generated by solving the forward process;
• It requires storing many stochastic paths of the forward SDE;
• It is computationally expensive and memory intensive;

v With the learned score function, it solves a reverse SDE repeatedly to generate targe samples X|Y;
• For each sample generation, it requires solving the reverse SDE for many time steps.

Score-based diffusion models to estimate                  for UQ

Reverse denoising process

manuscript submitted to JGR: Machine Learning and Computation

samples Z to generate parameter posterior samples to approximate the target distribu-148

tion p(X|Y = y).149

In the following sections, we first introduce the score-based di↵usion models in Sec-150

tion 2.1, and then describes each step of our DBUQ method in details where the Monte151

Carlo estimation of the score function is described in Section 2.2 and our supervised learn-152

ing strategy for target parameter posterior samples generation is introduced in Section 2.3.153

We illustrate our DBUQ method in Section 2.4 and lastly discuss its advantages in Sec-154

tion 2.5.155

2.1 The score-based di↵usion model156

The score-based di↵usion model includes two processes: the forward process and
the backward process, both of which are defined in a standard-temporal domain t 2 [0, 1].
The forward process is given by a forward stochastic di↵erential equation (SDE):

dZt = b(t)Ztdt+ �(t)dWt with Z0 = X|Y and Z1 = Z, (5)

where Z0 is the initial state and Z1 is the terminal state, Wt is a standard d-dimensional
Brownian motion, b(t) is the drift coe�cient, and �(t) is the di↵usion coe�cient. The
backward process is given by an associated reverse-time SDE:

dZt =
⇥
b(t)Zt � �2(t)S(Zt, t)

⇤
dt+ �(t)dBt with Z0 = X|Y and Z1 = Z, (6)

where Bt is the backward Brownian motion and S(Zt, t) is the score function.157

When using the di↵usion model to generate samples from a target distribution, it
first adds noises to the target distribution to transform it to a standard Gaussian dis-
tribution, and then uses some denoiser to transform the Gaussian distribution samples
to those samples following the target distribution. Specifically, the forward SDE in Eq. (5)
performs to gradually adding noises to the given initial distribution p(Z0), i.e., the tar-
get distribution which has the definition of p(Z0) = p(X|Y ) with Z0 = X|Y . Song
et al. (2021); Vincent (2011); Ho et al. (2020) indicated that by properly choosing the
drift and di↵usion coe�cients, b(t) and �(t), in the SDE of Eq. (5), the target distribu-
tion p(Z0) can be transformed to the standard Gaussian distribution p(Z1) = N (0, Id).
Here, b(t) and �(t) in Eq. (5) are defined as

b(t) =
d log↵t

dt
and �2(t) =

d�2
t

dt
� 2

d log↵t

dt
�2
t , (7)

where the ↵t and �t are calculated as

↵t = 1� t, �2
t = t for t 2 [0, 1]. (8)

Through some derivation, we can see that such definitions in Eq. (7) and (8) ensure the
conditional density function p(Zt|Z0) for any fixed Z0 following the Gaussian distribu-
tion, i.e,

p(Zt|Z0) = N (↵tZ0,�
2
t Id), (9)

which leads to p(Z1|Z0) = p(Z1) = N (0, Id). In this way, the forward SDE in Eq. (5)158

successfully transforms the target distribution to the standard Gaussian distribution.159

On the other hand, the reverse-time SDE in Eq. (6) performs as a denoiser, which160

can transform the terminal distribution p(Z1) = N (0, Id) to the initial distribution p(Z0).161

Then, given samples from the standard Gaussian distribution, we can solve the reverse-162

time SDE in Eq. (6) to generate target samples to quantify parameter posterior uncer-163

tainty. The standard score-based di↵usion model uses a NN to learn the score function164

S(Zt, t) and then for each Gaussian sample, it solves the reverse-time SDE in Eq. (6) to165
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obtain one target sample. This method is computationally intensive because generat-166

ing each target sample, it requires to solve the iterative reverse process, and this pro-167

cess needs to be performed repeatedly to generate the desired large number of target sam-168

ples for posterior distribution approximation. Additionally, when estimating the score169

function, the NN is trained in an unsupervised manner due to the lack of labeled data.170

This unsupervised learning requires storing a large number of stochastic paths of the for-171

ward SDE, which significantly increases the computational cost of the standard score-172

based di↵usion model further.173

In the following, we introduce our DBUQ method to improve the computational174

e�ciency. Briefly, DBUQ uses the Monte Carlo estimator to approximate the score func-175

tion (Section 2.2), next it trains a NN using supervised learning to learn the sample gen-176

erator F in Eq. (3) based on the labeled data produced by solving a reserve-time ODE,177

and then it evaluates the F to quickly generate the target samples (Section 2.3).178

2.2 Estimating the score function using a Monte Carlo estimator179

The score function in Eq. (6) is defined by

S(Zt, t) := rz log p(Zt), (10)

which is uniquely determined by the initial distribution p(Z0) and the coe�cients b(t)
and �(t) in the forward SDE of Eq. (5). Substituting

p(Zt) =

Z
p(Zt, Z0)dZ0 =

Z
p(Zt|Z0)p(Z0)dZ0

into Eq. (10) and using the conditional density function p(Zt|Z0) in Eq. (9), we can rewrite
the score function as

S(Zt, t) = rz log

✓ Z

Rd

p(Zt|Z0)p(Z0)dZ0

◆

=

Z

Rd

�Zt � ↵tZ0

�2
t

p(Zt|Z0)p(Z0)dZ0

Z

Rd

p(Zt|Z 0
0)Q(Z 0

0)dZ
0
0

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ]) p(X|Y )d[X|Y ]
Z

Rd

p (Zt|[X 0|Y ]) p(X 0|Y )d[X 0|Y ]

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ])
p(Y |X)p(X)

p(Y )
d[X|Y ]

Z

Rd

p (Zt|[X 0|Y ])
p(Y |X 0)p(X 0)

p(Y )
d[X 0|Y ]

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ]) p(Y |X)p(X)d[X|Y ]
Z

Rd

p (Zt|[X 0|Y ]) p(Y |X 0)p(X 0)d[X 0|Y ]

=

Z

Rd

�Zt � ↵tZ0

�2
t

wt(Zt, Z0)dZ0,

(11)

where p(X) is the prior distribution in Eq. (1), p(Y |X) is the likelihood function in Eq. (2),
and the weight function wt(Zt, Z0) is defined by

wt(Zt, Z0) = wt(Zt, [X|Y ]) :=
p (Zt|[X|Y ]) p(Y |X)p(X)Z

Rd

p (Zt|[X 0|Y ]) p(Y |X 0)p(X 0)d[X 0|Y ]
, (12)

–6–
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• Objective: draws samples to approximate posterior 
distribution of parameter X given observed y, 

• DBUQ formulates a generative model F to draw the target 
samples ,

• DBUQ uses a NN to estimate F using training samples;

• After training, this NN can evaluate standard Gaussian 
samples, Z, to quickly generate the desired parameter 
posterior samples

Our Diffusion-Based Uncertainty Quantification (DBUQ) method

manuscript submitted to JGR: Machine Learning and Computation

in the ELM, using five years of latent heat flux measurements from the Missouri Ozark116

AmeriFlux forest site. The performance of DBUQ is evaluated by comparing its estimated117

parameter posterior distributions against those obtained from MCMC sampling. The main118

contributions of this work include119

1. We develop a novel DBUQ method to improve earth system model calibration and120

parameter uncertainty quantification.121

2. Our DBUQ method addresses the challenges of high computational costs in tradi-122

tional uncertainty quantification methods such as MCMC sampling and some mod-123

ern ML methods including normalizing flows and di↵usion generative models.124

3. Applications show that DBUQ produces accurate parameter posterior distributions125

similar to those from MCMC sampling but requires 30 times less computing time.126

This significant improvement in e�ciency suggests that DBUQ can enable rapid, site-127

specific model calibration at a global scale.128

2 Di↵usion-based Uncertainty Quantification (DBUQ) Method129

We propose to develop a score-based di↵usion generative model for amortized Bayesian
inference. Given an observation y, we want to sample from the posterior distribution de-
fined by

p(X|Y = y) / p(Y = y|X)p(X), (1)

where X is the parameter we want to estimate, Y is the observation variable, p(X) is
the prior distribution of the uncertain parameter X, and p(Y |X) is the Gaussian like-
lihood function defined by

p(Y |X) / exp
�
�(Y � g(X))>⌃�1(Y � g(X))

�
. (2)

The function g(X) represents the physical model which has the uncertain parameters130

X we want to estimate, e.g., the ELM model investigated in this study.131

The DBUQ method draws parameter posterior samples by first formulating a pa-
rameterized generative model F to approximate X|Y , i.e.,

X|Y ⇡ F (Y, Z; ✓) with Y 2 Rq, Z 2 Rd, (3)

where X|Y is the parameter of interest, Y is the observation variable, and Z is the stan-132

dard Gaussian variable. We intend to train a NN model to learn the F , where ✓ repre-133

sents weights and biases of the NN, so that the F maps the observation variable Y and134

the standard Gaussian variable Z to the target conditional variable X|Y . Therefore, af-135

ter training of the NN, we can evaluate F (Y, Z; ✓) at the standard Gaussian samples Z136

to quickly generate the target parameter posterior samples of X|Y at Y = y.137

In implementation of the DBUQ method, we first generate a set of samples Dprior,

Dprior = {(xj , yj)}Jj=1, (4)

where samples {xj}Jj=1 are drawn from the prior distribution p(X) and the correspond-138

ing samples yj are obtained from the physical model simulations of g(·) at each xj , i.e.,139

yj = g(xj). Next, in the framework of score-based di↵usion model, we learn and eval-140

uate F to generate the target parameter posterior samples to quantify its uncertainty.141

Specifically, we first use a mini-batch-based Monte Carlo approach to estimate the score142

function based on the dataset Dprior. Then, we solve a reverse-time ordinary di↵eren-143

tial equation (ODE) in the di↵usion model based on the estimated score function to gen-144

erate labeled dataset Dlabel := {(xm, ym, zm)}Mm=1. Next, we train a feedforward NN145

on these labeled pairs to learn the generative model F in Eq. (3) using supervised learn-146

ing. Lastly, given an observation y, we evaluate the trained F at the standard Gaussian147
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v Use a NN to learn the relationship 
between [Y, Z] and  X|Y;

• X|Y is the parameter of interest;
• Y is the observation variable;
• Z is the standard Gaussian variable.

v The generation of target samples of X|Y is computationally and memory efficient; 
v For any given observation data, the NN can generate corresponding parameter 

posterior samples without the need for re-training.  
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• Objective: Generate training samples to train the NN and 
learn the relationship between Z and  X|Y.

• In the reverse SDE, the relationship between Z and X|Y is 
not deterministic, which means it cannot be learned.

• Through some derivation, we found the listed ODE solves 
the same distribution of X|Y, and it also provides a 
unique mapping between Z and X|Y. 

• Thus, we solve the ODE to generate the training data.

• To solve the ODE, we need to estimate the score function 
S, which involves an integral. 

• We use Monte Carlo (MC) method to estimate the 
integral based on prior samples                             
generated from the ELM model simulations.

Our Diffusion-Based Uncertainty Quantification (DBUQ) method

manuscript submitted to JGR: Machine Learning and Computation
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tion 2.1, and then describes each step of our DBUQ method in details where the Monte151
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d�2
t

dt
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t Id), (9)

which leads to p(Z1|Z0) = p(Z1) = N (0, Id). In this way, the forward SDE in Eq. (5)158

successfully transforms the target distribution to the standard Gaussian distribution.159

On the other hand, the reverse-time SDE in Eq. (6) performs as a denoiser, which160

can transform the terminal distribution p(Z1) = N (0, Id) to the initial distribution p(Z0).161

Then, given samples from the standard Gaussian distribution, we can solve the reverse-162

time SDE in Eq. (6) to generate target samples to quantify parameter posterior uncer-163

tainty. The standard score-based di↵usion model uses a NN to learn the score function164

S(Zt, t) and then for each Gaussian sample, it solves the reverse-time SDE in Eq. (6) to165
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which satisfies
R
Rd wt(Zt, Z0)dZ0 = 1.180

In DBUQ, we approximate the integrals of the score function S(Zt, t) defined in
Eq. (11) using Monte Carlo estimators with the samples Dprior = {(xj , yj)}Jj=1 in Eq. (4)
generated from the prior distribution. The definition of the reverse-time SDE in Eq. (6)
indicates that the samples in Dprior are also generated from the target distribution p(Z0),
by initiating at samples from p(Z1) = N (0, Id). Thus, the score function of Eq. (11)
can be estimated by

S(Zt, t) ⇡ S̄(Zt, t) :=
NX

n=1

�Zt � ↵t[xjn |y]
�2
t

w̄t(Zt, [xjn |y]), (13)

using a mini-batch of the dataset Dprior with batch size N  J , denoted by {(xjn , yjn)}Nn=1.
The weight wt(Zt, [xjn |y]) is calculated by

wt(Zt, [xjn |y]) ⇡ w̄t(Zt, [xjn |y]) :=
p(Zt|xjn)p(y|xjn)p(xjn)PN

n0=1 p(Zt|xjn0 )p(y|xjn0 )p(xjn0 )
, (14)

where p(Zt|xjn) is the Gaussian distribution defined in Eq. (9). Therefore, the weight
function wt(Zt, Z0) defined in Eq. (12) can be estimated by the normalized probability
density values {p(Zt|xjn)p(y|xjn)p(xjn)}Nn=1. In practice, the mini-batch size N can be
adjusted to balance the e�ciency and accuracy. Under the assumption of Gaussian like-
lihood and uniform prior, the Eq. (14) can be specified as

w̄t(Zt, [xjn |y]) =
exp

n
�(Zt�↵txjn )2

2�2
t

o
exp

�
�(y � yjn)

>⌃�1(y � yjn)
 

PN
n0=1 exp

n�(Zt�↵txjn0 )
2

2�2
t

o
exp

�
�(y � yjn0 )>⌃�1(y � yjn0 )

 , (15)

where yjn = g(xjn) is the physical model simulations of the observation variable for given181

parameter samples xjn .182

2.3 Supervised learning of the generative model to produce parameter183

posterior samples184

In this section, we describe how to leverage the score function estimated in Sec-185

tion 2.2 to generate parameter posterior samples for uncertainty quantification. First,186

we solve the reverse-time ODE in the di↵usion model based on the estimated score func-187

tion to generate labeled dataset {(xm, ym, zm)}Mm=1. Next, we train a feedforward NN188

on these labeled pairs to learn the generative model F . Lastly, given an observation y,189

we evaluate the trained F at numerous samples Z from the standard Gaussian to gen-190

erate the same large number of samples of X from the target distribution p(X|Y = y).191

Because of the stochastic nature of the reverse-time SDE in Eq. (6), the relation-
ship between the initial state Z0 = X|Y and the terminal state Z1 is not determinis-
tic or smooth. Thus, the labeled data {(xm, ym, zm)}Mm=1 can not be directly generated
by Eq. (6). It has been shown that the ODE corresponding to Eq. (6), defined by

dZt =


b(t)Zt �

1

2
�2(t)S(Zt, t)

�
dt with Z0 = X|Y and Z1 = Z, (16)

shares the same marginal probability density functions as the reverse-time SDE in Eq. (6).192

In addition, this ODE has unique solution and thus provides smoother function relation-193

ship between the initial state Z0 and the terminal state Z1. Therefore, we adopt the ODE194

in Eq. (16) to generate the labeled data using the sample set Dprior = {(xj , yj)}Jj=1.195

Figure 1 illustrates why the ODE model defined in Eq. (16) can be used to generate the196

desired labeled data.197

We denote the labeled dataset by

Dlabel := {(xm, ym, zm) : ym 2 Dprior, zm ⇠ N (0, Id) for m = 1, . . . ,M}, (17)
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Reverse SDE:

Reverse ODE:

• The ODE shows smooth and unique mapping between Z 
and X|Y;

• We solve ODE to generate training samples to learn the 
mapping between Z and X|Y.
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obtain one target sample. This method is computationally intensive because generat-166

ing each target sample, it requires to solve the iterative reverse process, and this pro-167

cess needs to be performed repeatedly to generate the desired large number of target sam-168

ples for posterior distribution approximation. Additionally, when estimating the score169

function, the NN is trained in an unsupervised manner due to the lack of labeled data.170

This unsupervised learning requires storing a large number of stochastic paths of the for-171

ward SDE, which significantly increases the computational cost of the standard score-172

based di↵usion model further.173

In the following, we introduce our DBUQ method to improve the computational174

e�ciency. Briefly, DBUQ uses the Monte Carlo estimator to approximate the score func-175

tion (Section 2.2), next it trains a NN using supervised learning to learn the sample gen-176

erator F in Eq. (3) based on the labeled data produced by solving a reserve-time ODE,177

and then it evaluates the F to quickly generate the target samples (Section 2.3).178

2.2 Estimating the score function using a Monte Carlo estimator179

The score function in Eq. (6) is defined by

S(Zt, t) := rz log p(Zt), (10)

which is uniquely determined by the initial distribution p(Z0) and the coe�cients b(t)
and �(t) in the forward SDE of Eq. (5). Substituting

p(Zt) =

Z
p(Zt, Z0)dZ0 =

Z
p(Zt|Z0)p(Z0)dZ0

into Eq. (10) and using the conditional density function p(Zt|Z0) in Eq. (9), we can rewrite
the score function as

S(Zt, t) = rz log

✓ Z

Rd

p(Zt|Z0)p(Z0)dZ0

◆

=

Z

Rd

�Zt � ↵tZ0

�2
t

p(Zt|Z0)p(Z0)dZ0

Z

Rd

p(Zt|Z 0
0)Q(Z 0

0)dZ
0
0

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ]) p(X|Y )d[X|Y ]
Z

Rd

p (Zt|[X 0|Y ]) p(X 0|Y )d[X 0|Y ]

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ])
p(Y |X)p(X)

p(Y )
d[X|Y ]

Z

Rd

p (Zt|[X 0|Y ])
p(Y |X 0)p(X 0)

p(Y )
d[X 0|Y ]

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ]) p(Y |X)p(X)d[X|Y ]
Z

Rd

p (Zt|[X 0|Y ]) p(Y |X 0)p(X 0)d[X 0|Y ]

=

Z

Rd

�Zt � ↵tZ0

�2
t

wt(Zt, Z0)dZ0,

(11)

where p(X) is the prior distribution in Eq. (1), p(Y |X) is the likelihood function in Eq. (2),
and the weight function wt(Zt, Z0) is defined by

wt(Zt, Z0) = wt(Zt, [X|Y ]) :=
p (Zt|[X|Y ]) p(Y |X)p(X)Z

Rd

p (Zt|[X 0|Y ]) p(Y |X 0)p(X 0)d[X 0|Y ]
, (12)
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S(Zt, t) := rz log p(Zt), (10)

which is uniquely determined by the initial distribution p(Z0) and the coe�cients b(t)
and �(t) in the forward SDE of Eq. (5). Substituting

p(Zt) =

Z
p(Zt, Z0)dZ0 =

Z
p(Zt|Z0)p(Z0)dZ0

into Eq. (10) and using the conditional density function p(Zt|Z0) in Eq. (9), we can rewrite
the score function as

S(Zt, t) = rz log

✓ Z

Rd

p(Zt|Z0)p(Z0)dZ0

◆

=

Z

Rd

�Zt � ↵tZ0

�2
t

p(Zt|Z0)p(Z0)dZ0

Z

Rd

p(Zt|Z 0
0)Q(Z 0

0)dZ
0
0

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ]) p(X|Y )d[X|Y ]
Z

Rd

p (Zt|[X 0|Y ]) p(X 0|Y )d[X 0|Y ]

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ])
p(Y |X)p(X)

p(Y )
d[X|Y ]

Z

Rd

p (Zt|[X 0|Y ])
p(Y |X 0)p(X 0)

p(Y )
d[X 0|Y ]

=

Z

Rd

�Zt � ↵t[X|Y ]

�2
t

p (Zt|[X|Y ]) p(Y |X)p(X)d[X|Y ]
Z

Rd

p (Zt|[X 0|Y ]) p(Y |X 0)p(X 0)d[X 0|Y ]

=

Z

Rd

�Zt � ↵tZ0

�2
t

wt(Zt, Z0)dZ0,

(11)

where p(X) is the prior distribution in Eq. (1), p(Y |X) is the likelihood function in Eq. (2),
and the weight function wt(Zt, Z0) is defined by

wt(Zt, Z0) = wt(Zt, [X|Y ]) :=
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Our Diffusion-Based Uncertainty Quantification (DBUQ) method
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v Use a NN to learn the score function;
• The training data are generated by solving the 

forward SDE process;
• It requires storing many stochastic paths of 

the forward SDE, which is computationally 
expensive and memory intensive;

v Solve a reverse SDE repeatedly using the 
learned score function to generate targe 
samples;
• For each sample generation, it requires to 

solve the SDE for many time steps.

v Formulate a supervised learning problem to 
estimate the sample generator F;
• After the generator is trained, it can quickly 

generate numerous parameter posterior 
samples for any given observations;

v Solve a reverse ODE to generate the training 
data to train a NN to estimate the F; 
• Computationally and memory efficient as 

solving the ODE only needs to store the initial 
and terminal states of the transport path;

Traditional score-based diffusion models Our DBUQ method

DBUQ method is computationally and memory efficient

Computationally expensive, memory-intensive Computationally and memory efficient
Amortized Bayesian inference
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An illustrative example of DBUQ

• Multimodal distributions can be 
common for earth system model 
parameter estimation;

• It is challenging for UQ methods to 
capture all the possible modes;

• DBUQ accurately approximates the 
target bi-modal distributions;

• DBUQ is computationally efficient, 
taking < 2min for this problem. 

Problem

Procedure

Result
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Apply DBUQ to improve ELM calibration
• Problem: Use DBUQ to estimate 8 ELM parameters;
• Observation: Annual averaged latent heat flux (LH) for 5 years at 

the Missouri Ozark AmeriFlux site in 2006-2010;
• Prior sample: 1000 paired samples 

• Two case studies:
o Synthetic case for method verification
o Real observations application

• Compare DBUQ with MCMC for performance evaluation

DBUQ

• Input: 1000 prior samples
• Output: a trained generator which can be quickly 

evaluated to generate target samples for any given 
observations;

• Computing time: < 10 min for solving both cases
• Particularly suitable for site-specific earth system 

model calibration at a global scale due to its 
computational efficiency and amortized inference.

MCMC

• Input: 1000 prior samples
• Procedure: build a surrogate model on the prior 

samples, and then perform MCMC simulations on 
the surrogate;

• Output: a set of posterior samples; For a different 
observation, we need to re-run MCMC; 

• Computing time:  ~ 5 hours for one case to generate 
the same number of posterior samples as DBUQ.
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DBUQ accurately and efficiently estimates parameter PDFs 
Synthetic case I

Synthetic case II

v DBUQ shows high accuracy in approximating the parameter posterior distributions.
• Similar to the MCMC results, both accurately estimate the “true” parameter values with high probability. 

v DBUQ demonstrates an accurate model calibration, as the prediction samples simulated from the parameter 
posterior samples are closely around the “true” observation.
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Real observation case

DBUQ accurately and efficiently estimates parameter PDFs 

v DBUQ again shows high accuracy in approximating the parameter posterior distributions.
• Similar to the MCMC results in estimating both the marginal and joint PDFs.

v DBUQ demonstrates an accurate model calibration, as the prediction samples simulated from the 
parameter posterior samples are closely around the observation. 

v Note, DBUQ achieves comparable accuracy with MCMC with significantly less computational time.
• DBUQ: 10 mins for all the three case studies;
• MCMC: 5 hours for one case study;

Lu et al., ICLR 2024. 
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Summary: advanced ML methods for efficient UQ

Surrogate Modeling

• Surrogate modeling demands 
an accurate surrogate across 
the entire parameter space.

• It requires a new MCMC 
simulation whenever 
likelihood functions vary.

Invertible Neural Network

• It is limited to INN structure.
• The dimension of [x] and [y, z] 

should be the same.
• The training of INN is unstable, 

heavily dependent on the 
hyperparameters.

Build a fast surrogate of the ELM, 
and then evaluate the surrogate in 
the standard UQ process

Input ensemble Output ensemble

ML 
surrogate

INN solves UQ problem directly based 
on ELM model simulation samples

TEM 
parameters

TEM 
outputs

Latent 
variable

Model 
inputs

Model 
outputs

Latent 
variable

Diffusion-based UQ
Our DBUQ method generates 
parameter posterior samples by 
evaluating the NN. 

• It can accurately quantify 
parameter uncertainty.

• It is computationally and 
memory efficient.

• It performs amortized Bayesian 
inference.

• It enables real-time and large-
scale model calibration and UQ.


