### Biophysical Implications of Plant Physiological Responses to Increasing CO<sub>2</sub>

Claire Zarakas<sup>1</sup>, Abigail Swann<sup>1</sup>, Marysa Laguë<sup>1,2</sup>, Kyle Armour<sup>1</sup>, and James Randerson<sup>3</sup>

<sup>1</sup>University of Washington, <sup>2</sup>University of California, Berkeley, <sup>3</sup>University of California, Irvine

## Plant physiological responses to CO<sub>2</sub> increase the magnitude and spread of the TCR in CMIP6 ESMs

#### Motivation:

- Plant responses to CO<sub>2</sub> alter surface energy and water fluxes
- Physiological contribution to the transient climate response (TCR) not previously systematically assessed across Earth system models (ESMs)

#### Methods:

 Used simulations from CMIP6 to isolate the radiative and physiological contributions to the TCR

#### Key findings:

- CMIP6  $TCR_{PHYS} = 0.12$ °C (6.1% of full TCR)
- Variation in TCR<sub>PHYS</sub> across models contributes to inter-model spread in the TCR



# We will quantify how stomatal conductance contributes to uncertainty and biases in hydrologic cycling

- Many ESMs represent stomatal conductance using the same parameters (e.g. stomatal slope parameter g1)
- Wide variation in g1 across plant types
- Preliminary research suggests the stomatal slope parameter has a large influence on surface energy budgets
- We will run experiments quantifying the extent to which the stomatal slope parameter influences hydrologic cycling in E3SM  $g_s \sim g_o + g_1 \frac{A}{h} \frac{1}{C}$

With a high Medlyn slope, the land surface *warms more* than it does with a low Medlyn slope in CESM2



### Relationship to White Paper

- Gaps in Current Research
  - Vegetation physiological responses to increasing  $CO_2$ , surface energy budgets, nutrients, and atmospheric forcing
  - Land-atmosphere interactions
- Goals
  - Evaluate plant physiological and land surface responses to changing atmospheric CO<sub>2</sub> levels and surface energy budgets
  - Design and conduct new model-data intercomparison experiments to elucidate mechanisms influencing future biogeochemical cycling and climate