Understanding the Evolution of Summer and Winter Polynyas Along Northern Greenland

Younjoo Lee¹, Wieslaw Maslowski¹, John Cassano², Robert Osinski³, Jaclyn Clement Kinney¹

¹Naval Postgraduate School, Monterey, CA, USA. ²University of Colorado (CU), Boulder, Colorado, USA. ³Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland.

Winter Polynya

- Negligible sea ice melt
- Positive thermodynamic ice growth regardless of warming
- Significant ice loss due to dynamic transport (200 km³)

Winds in February

Satellite Sea Ice Concentration

- Three polynya events occurred in 2011, 2017, and 2018
- No winter polynya (median SIC<90%) observed before 2010
- Based on the RASM simulation, southerly winds has become stronger and more persistent since 2011

Summer Polynya

Changing Arctic Sea-ice

Year	Ice Vol. Loss due to thermo- dynamics (km³): July to mid-August	Ice Vol. Loss due to dynamics (km³): July to mid-August
1985	65	268
2018	86	150
2020	93	138

<u>Summa ry</u>

Winter

- Latent heat polynya in February 2018, 2017, & 2011
 - Negligible thermodynamic sea-ice melting
 - Strong sea-ice divergence due to southerly wind
- Occurrence of winter polynya events in 2010s
 - Southerly (including SW & SE) winds have become more prevalent, persistent, and stronger.
 - Partly due to thinning of sea ice in the region

Summer

- Dynamic contribution to sea ice loss decreased
 - 268 km³ (80% in 1985) to 138 km³ (60% in 2020)
- But, thermodynamic sea-ice melting increased
 - 65 km³ (20% in 1985) to 93 km³ (40% in 2020).
- Thinning of sea-ice may not result in more frequent polynya formation, but less mechanical divergence of sea-ice is required to create a polynya.

Future Research

- Continue to enhance high resolution (\sim 2 km) model simulations
- Evaluate similar polynya events elsewhere under changing Arctic climate conditions
 - frequent storms/hurricane activities
 - thinning of sea ice cover
- Study their contribution to the Arctic regional climate
 - heat and moisture transport
- Explore impacts of polynya events
 - marine BGC