Drivers and Impacts of Southern Ocean Polynyas in HighResolution Earth System Models

Wilbert Weijer

Prajvala Kurtakoti Zachary Kaufman Milena Veneziani Achim Stössel Nicole Feldl Mathew Maltrud

AGU Fall Meeting, December 16, 2020

Polynyas

- Polynyas are areas of open ocean amidst the winter ice pack
- Characterized by
 - Strong ocean heat loss
 - Water mass formation
 - High biological productivity
- Two end members
 - Coastal polynyas: kept ice-free by offshore winds
 - Open-ocean polynyas: usually kept icefree by subsurface heat supply

Kent Moore/Barber & Massom (2007)

Polynyas in the Weddell Sea

- Weddell Sea polynyas
 - Large open-ocean polynyas
 - Observed last in mid-70s
- Maud Rise polynyas
 - Associated with Maud Rise/Astrid Ridge complex
 - Have occurred regularly, most recently 2016/2017

Campbell et al. (2019)

Lauren Dauphin/NASA Earth Observatory

Motivation

- Understanding the formation and impacts of polynyas in the Weddell Sea is important
 - Was the Weddell Sea polynya in the 70s:
 - The final occurrence of a regular phenomenon that is now being suppressed by climate change?
 - An expression of (multi-)decadal variability in a system with threshold behavior?
 - Could we have predicted the Maud Rise Polynyas from 2016/2017?
 - Could we have predicted that it would *not* evolve into a Weddell Sea polynya?
 - Even if Weddell Sea polynyas will never form again, they are ubiquitous phenomena in high-resolution climate models
 - Hence a potential source for mean-state bias
- Here we synthesize our work on the formation and impacts of polynyas in the Weddell Sea in an eddy-resolving climate model
 - Kurtakoti et al. (2018): Maud Rise polynya formation
 - Kurtakoti et al. (in review): Weddell Sea polynya formation
 - Kaufman et al. (2020): Impacts of Weddell Sea polynyas on heat budget

Prajvala Kurtakoti (TAMU/LANL)

Zachary Kaufman (UCSC)

The Model

- E3SMv0-HR
 - Energy Exascale Earth System Model
 - Branched from CESM1.3
- Model components
 - Ocean
 - Parallel Ocean Program (POP2)
 - 0.1° resolution
 - 42 levels
 - Sea ice
 - Los Alamos sea ice code (CICE4)
 - 0.1° resolution
 - Atmosphere
 - Community Atmosphere Model (CAM5-SE)
 - Atmosphere: 0.25°
- Run for 131 years
 - 1850 conditions

The Model: Polynyas

- The model has range of polynya behavior
 - No polynyas
 - Maud Rise polynyas
 - Weddell Sea polynyas
 - Embayments

The Model: Polynyas

6 initiation events of Maud Rise Polynyas (MRP-I)

Kurtakoti et al. (2018)

- Pre-polynya stratification characterized by strong Taylor Cap
 - Preconditions water column for convection

 Initiation of MRPs in most cases associated with rapid transition from positive to negative wind stress curl anomalies

Kurtakoti et al. (2018)

- But not sufficient condition
- So what triggers Maud Rise polynyas?

- Initiation of MRPs in all cases associated with *arrival of positive* salinity anomaly from the east
 - Reason is still not clear

Kurtakoti et al. (2018)

Weddell Sea Polynyas

- Why do some Maud Rise polynyas develop into Weddell Sea polynyas (while others don't)?
 - Large Maud Rise Polynyas can create high surface salinity anomalies which flow westward to trigger Weddell Sea Polynyas

Weddell Sea Polynyas

Implications for Heat Budget

- There is significant anti-correlation between meridional ocean (OHT) and atmospheric (AHT) heat transport
 - Bjerknes Compensation south of ice edge
- Is this driven by variability in OHT?

Kaufman et al. (2020)

Implications for Heat Budget

- Polynya formation associated with build-up of sub-surface heat reservoir
- This heat build-up is caused by reduced surface heat loss during ice-covered periods
 - Ocean heat advection counteracts heat build-up

Kaufman et al. (2020)

Conclusions

- Maud Rise polynyas
 - Taylor column dynamics over Maud Rise
 - Triggered by high surface salinity anomalies over the Maud Rise-Astrid Ridge Bathymetric Complex
- Weddell Sea Polynyas
 - Preconditioning through strong negative wind stress curl over the Weddell Sea
 - Build-up of heat reservoir
 - Triggered by Maud Rise Polynyas
- Bjerknes Compensation in Southern Ocean of eddy-resolving climate model
 - But driven by polynyas, not OHT variability