## Wave – Sea Ice Coupling in E3SM



## Background

Accurately representing the processes of wave-sea ice interactions is critical to simulating the changing wave climate in polar regions.

Sea ice floe sizes span a wide range of scales, described statistically by their floe size distribution (FSD).

Waves are critical to simulating FSD in the marginal ice zone



# Floes in the Bering Sea (MODIS)

## New Configurable Options in E3SM

- WW3 Spectral resolution: # of wave frequencies
  - 25, 36 (default), or 50 Frequency Bins
- Number of Ice Floe Categories:
  - 1 (default), 12,
- Use Floe Size Distribution: T/F
  - Allow column physics to calculate Floe Size Distribution (must use icepack column physics package)
- Allow wave Breaking of Ice Floes: T/F
  - Use wave information in Column physics. (requires use of 'Icepack' column package)

## Wave – Sea Ice Coupling Infrastructure

### Wave Watch III

### Wave Variables Sent to coupler:

- Significant wave height (Hs)
- **Wave Spectra** 
  - · function of wave frequencies
- Wave-to-ice stress (future?)

## Ice Vars received from Coupler:

- Ice Fraction
- Ice Thickness
- Mean Ice Floe Size Diameter



### MPAS – Sea Ice

### Wave Variables Received from Coupler:

- Significant wave height (Hs)
- Wave Spectra
  - function of wave frequencies
- Wave to ice stress (future?)

### Ice Variables sent to coupler:

- Ice Fraction
- Ice Thickness
- Mean Ice Floe Size Diameter

## "Floe Size Distribution" and "Ice Floe Breaking" in MPAS-SI

#### Floe Size Distribution

Ice floe size depends on advection of floes, thermodynamics (i.e growth due to

Mechanical  $\frac{\partial f(r,h)}{\partial r} = -\nabla \cdot (f(r,h)\mathbf{v}) + \mathcal{L}_T + \mathcal{L}_M + \mathcal{L}_W.$ Thermodynamics

Advection

freezing, or loss due to melting), mechanical processes (collisions, etc), and breaking due to waves

### **Wave Fracturing of Ice Floes**

- · Assumes sea ice flexes with the sea surface height field
- Ice Floe breaks if 'strain' exceeds critical threshold
- Resulting floe diameter = distance between the extrema in sea surface height field

