Spatial distributions and radiative forcing of aerosols in ACME v1-beta (AV1C-04P)

Hailong Wang, Po-Lun Ma, Kai Zhang, Richard Easter, Balwinder Singh, Susannah Burrows, Yun Qian, Steve Ghan, Phil Rasch

Objective and Summary

Objective:

Several new treatments of aerosol, cloud, and cloud-aerosol interaction have been implemented in the ACME v1-beta. Here we show overall and individual effects of the new treatments on aerosols and cloud properties, using nudged low-resolution (ne30) simulations.

Summary:

- Compared to earlier model configurations, the atmospheric AV1C-04P version has some code and input changes and parameter tunings that reduce biases in aerosol spatial distributions, aerosol indirect effects (AIE), low clouds, and precipitation.
- The net aerosol indirect forcings (AIF) of -1.3 and -1.0 W m⁻² (from the 5-year free-running and 1year nudged atmosphere simulations, respectively) are reasonably low. New treatments have individual impacts of less than 0.1 W m⁻² on net AIF but have more significant impacts on SW AIF (-0.15 to 0.18 Wm⁻²) and LW AIF (0.04 to -0.25 Wm⁻²)
- $\,\circ\,$ The differences in AIF are mostly due to effects on the liquid water path (LWP), as opposed to cloud drop number (N_d)
- $_{\odot}~$ The short nudged simulations can be a very useful tool for model evolution and tuning

Aerosol Direct and Indirect Effects

for Energy

- The SW and LW AIFs are more sensitive to ice-related new treatments (e.g., nucleation, DCS) and the Polar Mods (e.g., convective transport and wet removal processes)
- The sensitivity is dominated by changes in LWP in both stratiform and convective clouds

Spatial distributions of AIE

Impact of individual treatments on the PDF of ALWP and SW&LW AIF

