Deep Learning Forecasting of High Latitude Climate Variability

Tarun Verma¹ (tarunverma @lanl.gov), Nathan Urban²
¹Los Alamos National Laboratory, ²Brookhaven National Laboratory

- large thermal inertia over Subpolar North Atlantic (SPNA)
- affected by the overturning circulation
- Predictability hotspot

Hybrid Convolutional Neural Net (CNN) outperforms dynamical ENSO forecast systems

(Ham et al. 2019)

- skillful forecasts up to 18 months
- improves long standing issue of the spring predictability barrier

How well does this DL approach translate to the SPNA prediction problem?

A CNN based model to predict SST over the SPNA Box

- in an idealized setting (CESM preindustrial control simulation)
- using SST & upper ocean heat content from the larger Atlantic sector as shown

An example model architecture

		_		
Layer	i/p channel	o/p channel	Kernel	# Parameters (21721)
input	3x56x48			
Convolution	3	10	7x7	1480
Tanh	10	10		
MaxPool	10	10	2x2	
Convolution	10	10	5x5	2510
TanH	10	10		
MaxPool	10	10	2x2	
Convolution	10	10	3x3	910
TanH				
Linear	10	10	12x14	16810
Linear	10	1	30x1	11

- Predictors: 3-6 consecutive months of (prior) SST and OHC maps @ 2x2 degrees
- (Train, Validate, Test): 1500, 200, 100 years

Conclusions and Future Work

it translates well for seasonal predictions; not so much for multi-year predictions

tendency to overfit the training data for longer leads

Future work:

- I. Comparison with other standard benchmarks
- Testing of more complex architectures
- Use of transfer learning for real-time forecasts
- Interpret results/gain physical insights

