

# The ocean surface boundary layer: its representation and importance in Earth System Models

Luke Van Roekel Los Alamos National Lab November 10, 2016



ACME Fall Meeting 2016, Denver, CO

#### Ocean Surface Boundary Layer (OSBL)

- O(0.1 1 km) deep
- Mediates fluxes between atmosphere and deep ocean
- Many important physical properties
  - Most missing from ocean models







#### **OSBL** influences

Lag: -5 days

Lag: 0 day

105

20N

10S

105

 Regional precipitation dependent on sea surface temperature (SST)



₩ m-²



 Boundary layer depth (i.e., heat content) influences convective structure of the MJO

Benedict and Randall (2011)



ACME Fall Meeting 2016, Denver, CO

2 m s<sup>-1</sup>

## **OSBL** models

- Need to predict vertical turbulent fluxes (e.g.,  $\overline{w'T'}$ )
- Could use turbulence closure (e.g. Mellor and Yamada 1982)
  - Computationally expensive
  - Missing physics (e.g., nonlocal)
- Integrated turbulence kinetic energy (Kraus and Turner 1967)

celerated Climate Modeling

No OSBL vertical structure





## **K-Profile Parameterization**

- Allows structure in the OSBL by assuming diffusivity follows a specified shape  $(G(\sigma); \sigma \equiv -z/h)$ 
  - $G(\sigma)$  magnitude determined by
    - Surface fluxes
      - Deep ocean influence via diffusivity matching across OSBL
    - Boundary layer depth
- Non-local transport is a redistribution of any destabilizing surface flux
  - No non-local momentum transport.
- No prediction equations

celerated Climate Modeling







#### Testing

- Use large eddy simulation (LES) model as control
  - Can correctly minimize horizontal tendencies
  - Can ensure consistent forcing with KPP
- LES includes salinity and solar radiation.
- Experiments test a few key physical assumptions in KPP
  - Non-local transport
    - Is a cubic shape function appropriate?
    - Should shortwave radiation be included?
  - OSBL diffusivity matching to other mixing schemes
  - Not subject to energetic constraints



## **Cooling Test**

- No internal mixing
  - Matching does not matter
  - Artificially enhanced diffusivity at OSBL base does!
- OSBL deepening is dependent on resolution



elerated Climate Modeling



- Noise above is due to non-local shape function.
- With a halocline and uniform T(z), KPP non-local flux produces warming in the presence of cooling



## **Cooling with Wind**

- Large internal diffusivity gradients across OSBL base cause serious issues.
  - Large OSBL biases

elerated Climate Modeling

- Negative diffusivities.
- Using diffusive interpolation (linear) weakens internal gradient
- Smoothing internal diffusivities does not solve all issues







#### Summary

- Changes in ACME v1
  - Diffusivity matching abandoned
  - Diffusivity from internal schemes extended into the OSBL
- Remaining issues:
  - Entrainment (OSBL deepening) dependent on vertical resolution
  - Non-local term in KPP can cause many issues.
    - Negative BGC concentrations

lerated Climate Modeling

 Biases are very large near river outflow





## The path forward

- Fixing KPP
  - Shape function issues
    - "Best" shape function for nonlocal transport changes with forcing
  - OSBL structure depends on assumed internal mixing
  - Not subject to energetic constraints
- Abandon KPP
  - Based on assumed distributions (ADHOC, CLUBB)
  - More details at poster

ccelerated Climate Modeling





0.5

0.0

1.5