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The multi-model LE Repository

(Deser et al. 2020)
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Modelling Model version Resolution Years Initialization MNo. of
centre {atmosphere/ocean) member
CCCma CanESM2 -2.8%x2.85/1.4°x0.9* 1950-2100 Macroand micro 50
CSIRO ME3 6 -LO9%%1.9%/-19%%1.0° 1850-2100 Macro 30

GFDL ESA2M 20%x2.5°1 0°x0.9° 1950-2100 Macro 30
GFDL CM3 2.0°x2.5°/1.0°x09*° 1920-2100 Micro 20

AP MPI-ESM-LR  -1.9%x19%/nominal 1.5° 1850-2100 Macro 100
NCAR CESAMI -1.3*x09%/nominal 1.0° 1920-2100 Micro 40
5MHI or KMNMI  EC-Earth -11%x11° /nominal 1.0°  1860-2100 Micro 16

*Daily data from MPI are unavailable.

4

How large is the forced predictability in daily TAS/precipitation in the near term?
How significant is the forced predictability compared to that produced by ENSO?
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* Kullback-Leibler divergence

Diw(pll q) = J x P(X) logzp()dx

A way to compare dlstrlbutlons, but not a proper distance, as Dg.(pll 9 ) # Dx(q |l p)
1 bit of info: reduce uncertainty by 2

* n-dimensional Gaussian distribution

2 — — —
Da(pll @) = const « {in [SB) 1 o [o2(02) ] + (P - i)' (o) (4@ — ) ]

To quantify predictability limit:

Kleeman 2002 Branstator and Teng 2010, Ten% and Branstator 2011, Teng et al. 2011, Branstator
and Teng 2012, Branstator et al. 2012 (annual mean subsurface temp)

* Jensen-Shannon divergence (JSD)

1 1 1
JSD(p Il ) =3 D (pll M) + 5 Dyu(q I| M), M = S(p+9)
symmetric, smoothed ([0,1]) version of KLD

* Cost function for machine learning tasks, but has not been widely used in climate research| <
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El Nino vs. La Nina in CESM1 1800-yr picontrol

CESM1 DJF daily TAS pdf @63N, 194E
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TAS 2028-2032 vs. 1980-2000
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How significant is the forced predictability compared to that
produced by ENSO?
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With relative entropy we can quantify and compare predictability (of [/ \l

both forced and initial-value) on S2D time scales NI/
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