

Surface Climate Decadal Predictability in a Multi-Model Collection of Large Ensembles

Haiyan Teng¹, Grant Branstator², Claudia Tebaldi¹, Flavio Lehner²,³

October 14, 2020

Supported by

Catalyst and HiLAT SFAs

Office of Science

The multi-model LE Repository

(Deser et al. 2020)

Modelling centre	Model version	Resolution (atmosphere/ocean)	Years	Initialization	No. of member:
CCCma	CanESM2	-2.8°×2.8°/-1.4°×0.9°	1950-2100	Macro and micro	50
CSIRO	MK3.6	-1.9°×1.9°/-1.9°×1.0°	1850-2100	Macro	30
GFDL	ESM2M	2.0°x2.5°/1.0°x0.9°	1950-2100	Macro	30
GFDL	СМЗ	2.0°x2.5°/1.0°x0.9°	1920-2100	Micro	20
MPI	MPI-ESM-LR	-1.9°×1.9°/nominal 1.5°	1850-2100	Macro	100
NCAR	CESM1	-1.3°×0.9°/nominal 1.0°	1920-2100	Micro	40
SMHI or KNMI	EC-Earth	-1.1°×1.1°/nominal 1.0°	1860-2100	Micro	16

^{*}Daily data from MPI are unavailable.

How large is the forced predictability in daily TAS/precipitation in the near term? How significant is the forced predictability compared to that produced by ENSO?

Relative Entropy Shannon's information theory

Proudly Operated by Battelle Since 1965

Kullback-Leibler divergence

$$D_{KL}(p \parallel q) = \int_X p(x) \log_2 \frac{p(x)}{q(x)} dx$$

A way to compare distributions, but not a proper distance, as $D_{KL}(p \parallel q) \neq D_{KL}(q \parallel p)$

1 bit of info: reduce uncertainty by 2

n-dimensional Gaussian distribution

$$\mathbf{D}_{\mathrm{KL}}(\mathbf{p} \parallel q) = const * \left\{ ln \left[\frac{\det(\sigma_q^2)}{\det(\sigma_p^2)} \right] + tr \left[\sigma_p^2 \left(\sigma_q^2 \right)^{-1} \right] + \left(\overrightarrow{\mu^p} - \overrightarrow{\mu^q} \right)^T \left(\sigma_q^2 \right)^{-1} \left(\overrightarrow{\mu^p} - \overrightarrow{\mu^q} \right) - n \right\}$$

To quantify predictability limit:

Kleeman 2002 Branstator and Teng 2010, Teng and Branstator 2011, Teng et al. 2011, Branstator and Teng 2012, Branstator et al. 2012 (annual mean subsurface temp)

· Jensen-Shannon divergence (JSD)

$$JSD(p \parallel q) = \frac{1}{2} D_{KL}(p \parallel M) + \frac{1}{2} D_{KL}(q \parallel M), M = \frac{1}{2}(p+q)$$

symmetric, smoothed ([0,1]) version of KLD

Cost function for machine learning tasks, but has not been widely used in climate research.

El Nino vs. La Nina in CESM1 1800-yr picontrol

TAS 2028-2032 vs. 1980-2000

How significant is the forced predictability compared to that produced by ENSO?

With relative entropy we can quantify and compare predictability (of both forced and initial-value) on S2D time scales

