

The propagating environments for the initiation of summertime MCSs over the U.S. Great Plains

Fengfei Song¹, Zhe Feng¹, L. Ruby Leung¹, Simon Wang², Binod Pokharel², Xingchao Chen³, Koichi Sakaguchi¹

1. PNNL 2. Utah State University 3. The Pennsylvania State University

Motivation

During summer, large fraction of heavy rainfall-producing MCSs are initiated under the unfavorable large-scale environments, but the understanding on how smaller-scale environments initiate the MCSs is limited

Science questions

- Characterizing the summertime MCSs initiation environments by developing a long-term and high-resolution datasets
- Quantify the relative contributions of different kinds of smaller-scale perturbations to the initiation of summertime MCSs.

Methods

Self-organizing map analysis; fixed-grid and convection-centered composites

Although the large-scale environments are different between Type-1 and Type-4, the convection-centered environments resembles well.

Fixed-grid composites

Shading: θ_e Contour: Z200

Convection-centered composites

Shading: θ_e black contour: PS cyan contour: PR

Clear eastward propagating features in all the types

The role of MPs in the initiation of summer MCSs

The overlap between MP and MCS at 2009073001

	Type-1	Type-2	Type-3	Type-4
MCS number	336	235	217	347
MP number	189			
MCS overlap with MP	9 (2.7%)	7 (3.0%)	5 (2.3%)	34 (10%)

Research need in the future

- 3-5 years: track all the types of short-wave trough by using high temporal and horizontal resolution reanalysis (e.g., ERA5) and quantify their roles in the initiation of summertime MCSs; quantify the relative contributions of remote propagating perturbations and local conditions (e.g., soil moisture) in the summer MCSs initiation; conduct high-resolution model simulations to further quantify the roles of different factors in the MCSs initiation
- 5-10 years: use machine learning method to better understand the summertime MCSs initiation environments; design experiments by using global high-resolution (<10km) climate models, which can directly resolve MCSs, to investigate its future changes.