Revolutionizing large-scale parameter calibration for land surface hydrologic models using deep learning

Oct 2020 RGMA

Chaopeng Shen

Wen-Ping Tsai, Chaopeng Shen¹, Ming Pan², Kathryn Lawson¹, Dapeng Feng¹

- ¹ Civil and Environmental Engineering, Penn State University; cshen@engr.psu.edu
- ² Civil and Environmental Engineering, Princeton University

Motivation:

- 1. Parameter estimation has been a pain point for land surface models (LSM) for a long time (hydrologic, ecosystem, etc). For many models, repeated parameter calibration can take a lot of time.
- 2. Parameters equifinality causes huge uncertainties.
- 3. Purely data-driven models can only predict observed variables.
- 4. Coupling physics with ML may improve the chance to capture extremes.
- 5. Multifaceted process-based model outputs build better narratives and explanations to stakeholders.

Wen-Ping Tsai

Interactions w/ ecosystem/biogeochemistry

From parameter calibration to \rightarrow

Forward parameter learning (fPL)

We calibrated VIC model using SMAP data and the LSTM-based fPL scheme.

We turned parameter calibration into a pattern recognition problem, but with flexibility for the process-based model.

Parameter learning (fPL) -- results

- Equivalent to or slightly stronger than SCE-UA on the main calibration target
- Saves O(10⁴) computation

enter the Economy of Scale of big data machine learning

Get right results... for the right reason

More efficient and scales better with more data!

Parameter learning (fPL)

- Stronger than SCE-UA!
- Saves O(10⁴) computation!
- Better results at neighboring locations
- Better results for uncalibrated variables

