Seasonal streamflow forecast using Long Short-Term Memory (LSTM) networks

Oct 2020 **RGMA**

Chaopeng Shen

Ashutosh Sharma

Chaopeng Shen¹, Ashutosh Sharma, Wen-Ping Tsai

¹ Civil and Environmental Engineering, Penn State University; cshen@engr.psu.edu

Motivation:

- 1. Monthly streamflow outlook is one of the frequently requested results from HyperFacets stakeholders.
- 2. The outlook has practice significance for water use planning. It is relevant for flood protection, reservoir operation, and water use permitting
- 3. Consistent with the Northeast drought storyline.

Typical workflow:

- 1. Regional climate modeling + bias correction + hydrologic models.
 - → bias correction is tricky
 - → Information loss from both climate and hydrologic models
- 2. Statistical modeling.

→ unsure it is exhaustively extracting the information content from climate simulations and basin attributes U.S. Department of Energy | Office of Science Wen-Ping Tsai

Framework for Improving Analysis and Modeling of Earth System and Intersectoral Dynamics at Regional Scales

Workflow

$Q_q^{t_1:t_1+3} = LSTM_{D2}^{t_1}(F^{t_1:t_1+3}, A), t_1 = 3, 6, 9, 12$

R is the Pearson's correlation coefficient.

PS is the potential skill of the forecasts (i.e., the skill if there were no biases).

SREL (slope reliability) is a measure of the conditional bias.

SME is standardized mean error, a measure of the unconditional bias

