

Quantifying the influence of natural climate variability on in situ measurements of seasonal total and extreme daily precipitation

Mark Risser

RGMA All-Hands Meeting October 14, 2020

Extremes and Impacts Breakout

Co-authors: Michael Wehner, J.P. O'Brien, Travis O'Brien, Christina Patricola, Chris Paciorek, Huanpung Huang, and William Collins

Motivation: explore joint influence of climate drivers

- Need improved understanding of how modes of climate variability
 simultaneously/jointly influence precipitation in the observational record
 across the contiguous United States (e.g., D&A, seasonal prediction, etc.)
- In situ measurements are the "right" data source for extremes (gridded daily products underestimate daily extremes by up to 30%) → but need to resolve relationships to their native scales
- Methodological innovation: develop a single framework for characterizing the historical signal (anthropogenic forcing, GHG concentrations) and "noise" (natural variability: ENSO, PNA, NAO, AMO, AO, volcanic aerosols) in seasonal mean and extreme precipitation
- Important feature: simultaneously isolate the individual effects of seven modes of variability while explicitly controlling for joint inter-mode relationships
 - Climate "drivers"/modes of var.: GHGs, ENSO, PNA, NAO, AMO, AO, volcanic aerosols

Extreme daily precipitation: isolate drivers + significance

Results: isolated relationships vs. Rx1Day

- Strong signal for ELI (extremes larger for El Nino)
- Strong signal for PNA (extremes generally larger in the -ve phase)
- Positive NAO makes wintertime extremes larger in Ohio River Valley
- Volcanic SAOD/AMO have minimal impact

DJF: change in 10-year return values (mm)

Green = extremes larger for large/+ve index; Brown = extremes larger for small/-ve index

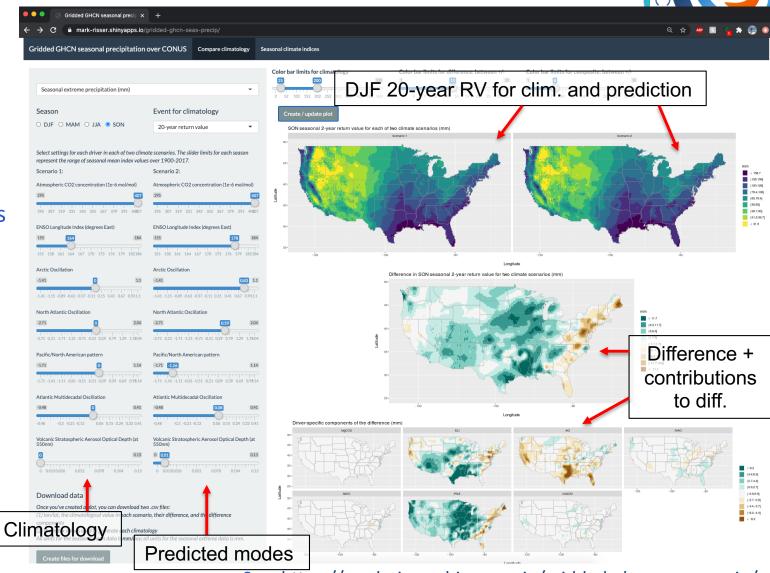
 Note: detectability even in light of large background variability (>95%) in extreme precipitation over CONUS

(4,6] (3,4]

(1,3]

(-1,1] (-3,-1]

(-4, -3]


(-6,-4] < -6

Significance

Low High

White paper: high-resolution "statistical prediction"

- Our approach
 can be
 considered a
 statistical
 emulator for
 generating
 climate scenarios
- climate drivers
 can be predicted
 on the seasonal
 timescale, could
 use our
 framework for
 anticipating
 seasonal
 mean/extreme
 precipitation

