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= 20 tropical Pacific:
2 10 £l Nifio Southern Oscillation (ENSO) is a

1980 1950 2000 2010 major feature of observed interannual climate
Std. dov.- 1.01 CESM variability, with global effects in both the
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and ocean is too small.

0.0 standard deviation is too small.

o In Nifio 3.4 region (Figure 1) interannual

220 220 240 wo In east Pacific, skewness is too small —
there are no major El Nino events.

Figure 1: Nino 3.4 region average SST
anomaly (relative to monthly climatology,
and with 5-month smoothing) from ERA-
Interim, CESM and ACME.

Atmosphere and ocean, chicken and egg:

Atmosphere, ocean and surface fluxes all show biases that could potentially cause, or be
caused by, SST biases in the Pacific. Determining the root of the problem is difficult.
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~ - Net shortwave radiation too large (Fig. 29)

8.0 —

' : Q140 3

-

1S

F 5 60 S

P [ — -y o
o ] n 120
://—\: = E

40 4 = 100
S b F X E
5 20 3 F T 80
o 20 - E

In the ocean, mixed layer is too shallow, with
little east—west gradient. However, profiles
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Figure 3: ACME and
CESM upper ocean
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Figure 2: Long term annual averages of meridional points in the west

mean (5° S to 5° N) for various quantities across
the tropical Pacific from ACME betaO and CESM
coupled runs and ERA-Interim.

potential density
(bottom) from two grid o

Pacific (left) and east
Pacific (right) for
January in 10 years.

Atmosphere-only runs

Using climatological SSTs in AMIP-like run:

- Net shortwave still too large despite
similar cloud fraction to ERA-Int (Fig. 49).

- Wind stress, speed and latent heat flux
larger than in ERA-Interim, despite same
SST gradient (Fig. 4a-d).

Using SSTs from a CORE2-forced ocean-run:

- Latent heat flux too large in central Pacific,
due to over-strong SST gradient (Fig. 4d).
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Coupled run with v0 atmosphere:
~petat With atmosphere model tunings from vO (like CESM
: large ensemble; Fig. 5):

- Biases in atmosphere and surface variables are
reduced

- The change has more effect than changing ocean
model tuning (betal vs. beta1 04)

Figure 4: As in
Fig. 2 but with
two atmo-only
runs: AMIP-like
with observed
SSTs (solid red)
and SSTs from
ocean-only run
that was forced
by CORE2 data.

Figure 5: As in Fig. 2 but for SST and net shortwave - Mean state (including SST) is similar to CESM

at surface only, with betal_04 coupled run - Variability is still too small in the equatorial Pacific.

(different ocean to beta0) and betal vOatm (same
ocean as betal 04 but different atmosphere).

Ocean vertical resolution:

Steps in ocean profiles and strong near surface

temperature gradient (Figure 3) led us to

Mixed layer depth / m

hypothesize that lower vertical resolution may %0 P

help ENSO. With lower res. 60-level ocean (Az = 120 - CESJ E§E§§§§-‘FE°F'3”°B@M
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- Ocean mixed layer depth more realistic (Fig. 6). T e

- No great improvement in ENSO: variability not Fig. 6: As in Fig. 2 but for mixed layer depth from

much larger than in high vertical resolution cases.

Figure 7: Fraction of surface net shortwave
radiation that is absorbed in 1-meter
layers near the ocean surface, from ACME,

four ACME coupled runs, one ACME ocean-only
run and CESM. Mixed layer depth is here defined
using temperature gradient method: results
differ between methods but generally 60-level
ocean runs have deeper mixed layer.

which uses two exponential terms in its Shortwave absorption in the ocean:

formulation, and Zeng and Beljaars (2005),
wfgich uses three exponential terms.

B ACME (2 exp)
B ZB05 (3 exp)

Coupled runs with 100-level ocean show a strong diurnal
warm layer; this is not as apparent in 100-level ocean-
only runs, leading us to ask whether handling of
shortwave radiation in ocean may play a role.
Absorption of SW radiation in top three ocean layers
in ACME differs from a commonly used alternative
(Zeng and Beljaars, 2005; Fig. 7).

Surface flux biases mostly caused by atmosphere model, but not primary cause of weak ENSO P % Avsorpton (ractonof SW__ ) - This could be a new path to investigate....
‘\ For additional information, contact: _ _ _ U.S. DEPARTMENT OF
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for Energy jeyre@email.arizona.edu climatemodeling.science.energy.gov/acme




