
AI for Science Town Hall (presented by Forest Hoffman) 
 

● OSCAR Town Hall: identify challenges with which AI could help 
○ Final report after a series of workshops: doi:10.2172/1604765 
○ Chapter 2 of the report focuses on Earth and Environmental sciences 

■ Project environmental risk and develop resiliency in a change 
environment 

● Weather extremes threaten infrastructure and built environment 
■ Characterize and modify subsurface conditions 

● Subsurface process understanding is key to transition to 
renewable energy 

● Existing subsurface data is sparse and heterogenous 
● Existing subsurface models are saddled with uncertainty and 

unreliable for long time periods 
● Use AI to address these problems 

■ Predictive understanding of Earth system under a changing environment 
● Observations are diverse and heterogeneous 
● Incorporate knowledge from these sources into earth system 

models 
■ Water security 

○ Expected outcomes 
■ Data-driven and physics-constrained hybrid models 

● Address scaling and heterogeneity issues 
■ Use AI for model testbeds and surrogate models 
■ Combine energy models with earth system models 

● HPC intensive 
■ Use large data streams for energy production and predictive process 

understanding 
● Focus on data acquisition and thinking of a framework where AI/ 

ML can help at each phase 
● Measurement/ observations to better simulations 

○ S.C. Pryor: How should we tackle the training data problem? 
■ Examples of areas with missing training data? 

● Production of wind farms 
● Transmission across ISOs 

■ Forest Hoffman: much of the data is considered proprietary (property of 
energy production companies and large facilities) 

● Possible solution: regulate and mandate that the data be available 
for training 

■ Paul Ulrich: two solutions to lack of training data 
● 1. Increase the amount of data 
● 2. Impose more constraints on the problem to reduce the solution 

space of possible outputs 
○ Eliminate “unphysical” possibilities 



Topics for the panel 
Prospects for AI/ML 

● What major scientific advances should we strive for by deploying AI/ML? 
○ Katie Dagon - can we use ML to automate calibration of climate models? 

■ Results are mixed based  
■ Crucial question: are we gaining efficiency with ML? Expert-guided tuning 

is time-intensive 
■ Benefit: gain computational efficiency 

○ Katie Dagon - D&A of extremes 
■ There is lot to learn from CS literature and experts 
■ Interdisciplinary collaboration is key 
■ Interpretation and validation of D&A is paramount. 

○ Katie Dagon - how can we use ML to improve predictability and prediction? 
○ Ruby Leung - Use AI/ ML to identify precursors to wildfires or other extremes 

■ Currently, the precursors are unknown to us. Maybe there are precursors 
in fields that are less well-explored (e.g. land-surface fields or soil 
moisture).  There tends to be more emphasis on fields relating to 
atmospheric circulation.   

■ Usually, hindsight case studies are done after the storm hits 
■ Steer observations to help change the monitoring systems 
■ Will the precursors change in the future making it harder/ easier to predict 

the event 
○ Ruby Leung - use AI/ ML to identify the most powerful constraints to improve 

predictive understanding and skill? 
■ Question to ask ML: use ML to assign a probability to the projection 

coming from different models 
● Why did you assign the probability you did? 
● Example test case: S2S models 

○ Balu Nadiga - improve predictive skill and put climate prediction on the same 
footing as weather prediction 

■ Currently, climate modelling is done with the goal of process 
understanding 

■ Use ML for a paradigm shift to improve predictive skill 
● Currently, climate prediction is beset by uncertainties 
● One possibility: first, get predictive skill using whatever methods 

necessary.  Then, get better scientific understanding. 
○ Alex Hall - look more at biogeochemical variables 

● What does success look like? 
○ Katie Dagon - reduced model bias is the goal 
○ Alex Hall (on model and observational diagnostics) - nonlinear modelling 

■ Development of understanding of modes of variability was based on 
linear statistics 

■ Physics of the system are nonlinear.  Variability modes should fit this 
better. 



■ Example: how would ENSO have been characterized if ML was available 
at the time? Probably ML could have represented the oscillation and its 
impacts better. 

○ Alex Hall - understand the three unknowns below 
■ Relative contributions of parametric and structural uncertainty, 
■ Use ML to understand internal variability 
■ Use ML to determine the degree of model overlap because of shared 

code (how orthogonal are they?)  
○ Forest Hoffman - use ML for gap-filling more effectively (especially in nonlinear 

cases) 
■ Account for heterogeneity and diverse datasets 

○ Forest Hoffman - use ML  as a probe to better understand parameterizations 
■ If ML can improve a specific parameterization, what can that tell us about 

the existing parameterization of the process? 
Q&A 

● Michael Wehner - what are the prospects for unsupervised learning in climate? 
○ Katie Dagon - semi-supervised and unsupervised learning could be useful for 

working in new climate states 
■ Good example: Naomi Goldenson’s presentation on using self-organizing 

maps and neural networks to identify drivers of ARs 
○ Balu Nadiga - generative adversarial networks offer promise in this area 

■ GANs can be used to augment existing datasets by creating new data 
with similar characteristics of the original dataset.  This way, it will be 
possible to have more training data 

■ Leverage reinforcement learning for no-analogues situations 
● Angeline Pendergrass - is ML useful for relationships that are fundamentally 

linear? 
○ Alex Hall - the beauty of ML is that it does not make any assumptions about 

linearity or nonlinearity of the data 
■ Libby Barnes’s paper: uses NNs to identify anthropogenic signals 

○ Balu Nadiga - even in a linear system, the memory of the system can make the 
problem space very complex 

■ Cookman operators - raise a nondynamical system to an infinite 
dimensional space.  

■ there are linear operators in the infinite dimensional space that can 
represent the nonlinear changes 

○ Paul Ulrich - ML methods can be “forced” to be linear by using linear activation 
functions 

○ Matt Newman - a nonlinear system may be predictably linear on some time 
scales 

○ Paul Ullrich - ML methods have the potential to quantify nonlinearity 
■ In streamflow forecasting, he uses the Nash-Sutcliffe coefficient to 

quantify the improvement of ML over regression over the same set of 
inputs 



○ Matt Newman - a danger of using ML to represent a linear system is that it may 
overfit to noise 

■ The ML model would overfit unpredictable noise as predictable 
nonlinearity 

■ For this reason, dynamical models may be a better approach, since they 
relate to the physics of the system 

● Jitu Kumar - are explanaibility approaches scalable and transferable to other 
problems? Or are they custom for each problem at hand? 

○ Katie Dagon - Layerwise relevance propagation and feature importance tests are 
transferable across topics 

■ Some classes of problems have different interpretability methods: e.g. 
classification vs. regression 

○ Colin Zarzycki - Libby Barnes and DJ Gagne are good examples of NN 
interpretability 

○ Paul Ullrich - new tools from the ML community on interpretability 
■ “Transformers” (which are a specific class of neural network architecture) 

give rise to activation maps naturally 
○ Paul Ullrich and Jitu Kumar - they pose an open question on explainability 

■ If 2 neural networks have different hyperparameters but similar accuracy, 
will the interpretability methods yield the same output? 

■ Paul Ullrich - using a model with too many parameters leads to overfitting.  
Using a model with too few parameters leads to underfitting.  
Hyperparameter searching should be used to find the ideal model 
architecture. 

● Paul Ullrich - There is an open problem related to memory 
○ There needs to be data reduction in the input space.  A key challenge with using 

ML/AI for climate problems is that there are memory bottlenecks during training, 
because the input is large. 


