## Al for Science Town Hall (presented by Forest Hoffman)

- OSCAR Town Hall: identify challenges with which AI could help
  - Final report after a series of workshops: doi:10.2172/1604765
  - Chapter 2 of the report focuses on Earth and Environmental sciences
    - Project environmental risk and develop resiliency in a change environment
      - Weather extremes threaten infrastructure and built environment
    - Characterize and modify subsurface conditions
      - Subsurface process understanding is key to transition to renewable energy
      - Existing subsurface data is sparse and heterogenous
      - Existing subsurface models are saddled with uncertainty and unreliable for long time periods
      - Use AI to address these problems
    - Predictive understanding of Earth system under a changing environment
      - Observations are diverse and heterogeneous
      - Incorporate knowledge from these sources into earth system models
    - Water security
  - Expected outcomes
    - Data-driven and physics-constrained hybrid models
      - Address scaling and heterogeneity issues
    - Use AI for model testbeds and surrogate models
    - Combine energy models with earth system models
      - HPC intensive
    - Use large data streams for energy production and predictive process understanding
      - Focus on data acquisition and thinking of a framework where Al/ ML can help at each phase
      - Measurement/ observations to better simulations
  - S.C. Pryor: How should we tackle the training data problem?
    - Examples of areas with missing training data?
      - Production of wind farms
      - Transmission across ISOs
    - Forest Hoffman: much of the data is considered proprietary (property of energy production companies and large facilities)
      - Possible solution: regulate and mandate that the data be available for training
    - Paul Ulrich: two solutions to lack of training data
      - 1. Increase the amount of data
      - 2. Impose more constraints on the problem to reduce the solution space of possible outputs
        - o Eliminate "unphysical" possibilities

## **Topics for the panel**

## Prospects for AI/ML

- What major scientific advances should we strive for by deploying Al/ML?
  - o Katie Dagon can we use ML to automate calibration of climate models?
    - Results are mixed based
    - Crucial question: are we gaining efficiency with ML? Expert-guided tuning is time-intensive
    - Benefit: gain computational efficiency
  - Katie Dagon D&A of extremes
    - There is lot to learn from CS literature and experts
    - Interdisciplinary collaboration is key
    - Interpretation and validation of D&A is paramount.
  - Katie Dagon how can we use ML to improve predictability and prediction?
  - Ruby Leung Use AI/ ML to identify precursors to wildfires or other extremes
    - Currently, the precursors are unknown to us. Maybe there are precursors in fields that are less well-explored (e.g. land-surface fields or soil moisture). There tends to be more emphasis on fields relating to atmospheric circulation.
    - Usually, hindsight case studies are done after the storm hits
    - Steer observations to help change the monitoring systems
    - Will the precursors change in the future making it harder/ easier to predict the event
  - Ruby Leung use Al/ ML to identify the most powerful constraints to improve predictive understanding and skill?
    - Question to ask ML: use ML to assign a probability to the projection coming from different models
      - Why did you assign the probability you did?
      - Example test case: S2S models
  - Balu Nadiga improve predictive skill and put climate prediction on the same footing as weather prediction
    - Currently, climate modelling is done with the goal of process understanding
    - Use ML for a paradigm shift to improve predictive skill
      - Currently, climate prediction is beset by uncertainties
      - One possibility: *first*, get predictive skill using whatever methods necessary. *Then*, get better scientific understanding.
  - Alex Hall look more at biogeochemical variables

#### What does success look like?

- Katie Dagon reduced model bias is the goal
- Alex Hall (on model and observational diagnostics) nonlinear modelling
  - Development of understanding of modes of variability was based on linear statistics
  - Physics of the system are nonlinear. Variability modes should fit this better.

- Example: how would ENSO have been characterized if ML was available at the time? Probably ML could have represented the oscillation and its impacts better.
- Alex Hall understand the three unknowns below
  - Relative contributions of parametric and structural uncertainty,
  - Use ML to understand internal variability
  - Use ML to determine the degree of model overlap because of shared code (how orthogonal are they?)
- Forest Hoffman use ML for gap-filling more effectively (especially in nonlinear cases)
  - Account for heterogeneity and diverse datasets
- Forest Hoffman use ML as a probe to better understand parameterizations
  - If ML can improve a specific parameterization, what can that tell us about the existing parameterization of the process?

#### Q&A

# • Michael Wehner - what are the prospects for unsupervised learning in climate?

- Katie Dagon semi-supervised and unsupervised learning could be useful for working in new climate states
  - Good example: Naomi Goldenson's presentation on using self-organizing maps and neural networks to identify drivers of ARs
- Balu Nadiga generative adversarial networks offer promise in this area
  - GANs can be used to augment existing datasets by creating new data with similar characteristics of the original dataset. This way, it will be possible to have more training data
  - Leverage reinforcement learning for no-analogues situations

# Angeline Pendergrass - is ML useful for relationships that are fundamentally linear?

- Alex Hall the beauty of ML is that it does not make any assumptions about linearity or nonlinearity of the data
  - Libby Barnes's paper: uses NNs to identify anthropogenic signals
- Balu Nadiga even in a linear system, the memory of the system can make the problem space very complex
  - Cookman operators raise a nondynamical system to an infinite dimensional space.
  - there are linear operators in the infinite dimensional space that can represent the nonlinear changes
- Paul Ulrich ML methods can be "forced" to be linear by using linear activation functions
- Matt Newman a nonlinear system may be predictably linear on some time scales
- Paul Ullrich ML methods have the potential to quantify nonlinearity
  - In streamflow forecasting, he uses the Nash-Sutcliffe coefficient to quantify the improvement of ML over regression over the same set of inputs

- Matt Newman a danger of using ML to represent a linear system is that it may overfit to noise
  - The ML model would overfit unpredictable noise as predictable nonlinearity
  - For this reason, dynamical models may be a better approach, since they relate to the physics of the system
- Jitu Kumar are explanaibility approaches scalable and transferable to other problems? Or are they custom for each problem at hand?
  - Katie Dagon Layerwise relevance propagation and feature importance tests are transferable across topics
    - Some classes of problems have different interpretability methods: e.g. classification vs. regression
  - Colin Zarzycki Libby Barnes and DJ Gagne are good examples of NN interpretability
  - Paul Ullrich new tools from the ML community on interpretability
    - "Transformers" (which are a specific class of neural network architecture)
      give rise to activation maps naturally
  - Paul Ullrich and Jitu Kumar they pose an open question on explainability
    - If 2 neural networks have different hyperparameters but similar accuracy, will the interpretability methods yield the same output?
    - Paul Ullrich using a model with too many parameters leads to overfitting. Using a model with too few parameters leads to underfitting. Hyperparameter searching should be used to find the ideal model architecture.
- Paul Ullrich There is an open problem related to memory
  - There needs to be data reduction in the input space. A key challenge with using ML/AI for climate problems is that there are memory bottlenecks during training, because the input is large.