The role of sea ice physics in modeling and prediction of Arctic climate change

Wieslaw Maslowski¹

Robert Osinski², Anthony Craig*, Younjoo Lee¹, Jaclyn L. Clement Kinney¹, Mark Seefeldt³, John Cassano³ and Bart Nijssen⁴

¹Naval Postgraduate School (NPS), ²Institute of Oceanology, Polish Academy of Sciences (IOPAS), *Contractor, ³University of Colorado, ⁴University of Washington

Regional Arctic System Model (RASM) Overview

RASM 2.0 (RBR)	Code	Configuration Pan-Arctic domain (down to ~30°N in N ~45°N in N. Atlantic) including all NH sea	
Atmosphere	WRF371	50km / 25km, 40 levels	Golen Amosphere Land
Land	VIC4	50km / 25km, 3 Soil Layers	RASM Wiring Diagram Dynamic downscaling ESM / Reanalysis
Ocean	POP2	1/12° (~9km) & 1/48° (~2.4km) 45 / 60 levels (20m@5m/100m@5m)	Atmosphere WRF Sea Ice CICE Coupler CPL7 Streamflow Routing RVIC Model Component Fluxes Atmospheric Boundary Conditions Marine BGC
Sea ice	CICE6	1/12°/1/48°, 5 thickness categories Anistropic(EAP)/Isotropic(EVP) rheology	
Coupler	CPL7x	Flux exchange every 20/10 min, inertial resolving w/ minimized lags	

Lateral boundary conditions and (T_{air}, U_{air}, V_{air}) nudging above 500mb in WRF from NCEP reanalysis or NCEP interannual forecasts. No data assimilation!

Synoptically accumulated storm forced sea ice deformations and growth

01/22-27/1980

In RASM simulations, EAP rheology relative to EVP:

- Produces more realistic linear kinematic features (LKFs: e.g. leads & ridges);
- 2. Over 40 years increases SIV:
 - > total by 17%
 - > ridged by 22%
 - ➤ level by 11%

RASM Sea Ice Initial Conditions: July 1, 2019

Based on separate RBR 1979-2019 hindcasts forced along the boundaries with NCEP CFSR/v2 reanalysis.

No data assimilation!
Initial conditions are physically consistent across all coupled model components!

RASM 6-month Ensemble Mean Forecast for 12/31/2019

10-member ensembles, each initialized on July 1, 2019

- Negligible sensitivity in sea ice extent (SIE)
- Large sensitivity in sea ice volume (SIV)
- SIE is not a sufficient metric of model predictive skill!

The initial <u>difference in sea ice thickness and volume persist in forecasts for 6 months!</u>

Summary

- 1. A single change in sea ice model physics (e.g. sea Ice rheology) can change mean ice volume by 17% of the total;
- High-frequency coupling is key to representing the impact of varying sea ice model physic (e.g.: synoptic storms inertial oscillations sea ice deformations);
- 3. Regionally optimized model physics improves the realism of initial conditions and sub-seasonal to decadal projections.