Causes of recent changes in extreme wildfire in California's South Coast

From the perspective of meteorological circulation and decadal variability

Yen-Heng (Henry) Lin Alex Hall

Department of Atmospheric and Oceanic Sciences University of California, Los Angeles

RGMA PI Meeting October 14,2020

Wildfire in California's South Coast

a) Fire Cases (burned area > 100 acres)

b) Total Burned Area

- Extreme dry condition in wildfire day => average burned area in South Coast.
- How are the long-term circulation changes associated with the recent increase in average wildfire size?

Long-term Circulation changes in May-September

- Stable heat wave anomalous + southward extension of SLP variance => higher risks of drier and hot events.
- CMIP6 can simulate the changes of VPD but cannot well simulate these multi-year circulation changes.

Long-term Circulation changes in October-December

- High variances of jet stream system+
 Equatorward extension of high-pressure anomaly =>
 Drier Santa Ana wind and high risks of large fires
- Challenges/Future direction: understand the multiyear changes of climate internal variability on regional climate and wildfires in GCM (RCM).