# How do biophysical climate effects of deforestation influence tropical vegetation carbon loss?

Yue Li<sup>1</sup>, James T. Randerson<sup>1</sup>

and the BGC Team

1 Department of Earth System Science, University of California, Irvine

DOE RGMA 2020 PI Meeting, Oct 13, 2020

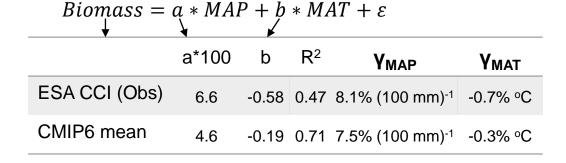


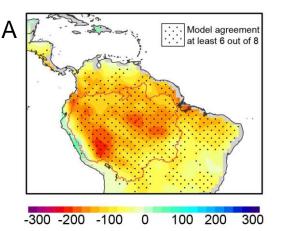






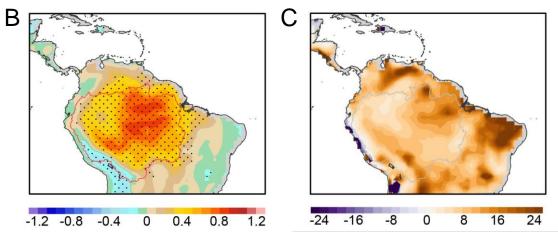



## **Research summary**


## **Objective:**

- Deforestation leads to a direct tropical forest biomass loss.
- Regional biophysical climate effects of deforestation may contribute to additional vegetation carbon losses
- Here we quantify the extra carbon loss from the biophysical changes across different tropical continents

### Approach:


- We quantified rainfall and temperature change from deforestation using data from the LUMIP experiments (Lawrence et al., 2016)
- We converted the biophysical changes to carbon using the temperature and rainfall relationships that describe the spatial pattern of tropical aboveground vegetation carbon





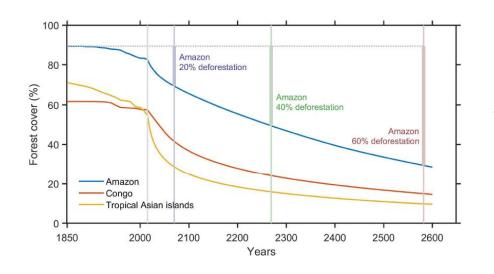
Biophysical effects of deforestation on:

- A Rainfall (MAP, mm yr<sup>-1</sup>)
- B Temperature (MAT, °C)
- C Vegetation carbon (%)



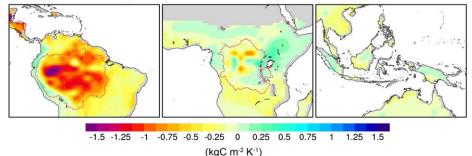
#### **Results:**

- Amplification of the deforestation losses by means of biophysical feedbacks varied by continent
- Carbon losses from the biophysical response contributed to an additional 18% biomass loss in the Amazon, 11% in the Congo and 1% in tropical Asia.


#### **Future research**

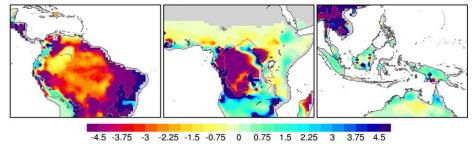
#### **Objective:**

 Explore deforestation interactions with plant physiological responses to increasing CO<sub>2</sub>


## Approach:

- Simulate the deforestation scenario in the tropics using a cellular automata model
- Perform transient simulations by adding deforestation into the C4MIP 1%COU, 1%BGC simulations




Simulated transient tropical deforestation scenario

CO<sub>2</sub>-driven climate-vegetation carbon feedback



γ from 1%COU & 1% BGC

Deforestation-driven climate-vegetation carbon feedback



(kgC m-2 K-1)

γ from LUMIPbased biophysical climate × Observationbased sensitivity

## Relation to white paper

## Gaps in Current Research

## Earth system feedback from vegetation cover change

### **Land-atmosphere interactions**

- Evaluated the CESM simulated deposition in mineral aerosols in a coupling manner (Li Y, et al. Deforestation strengthen dust transport from North Africa to the Amazon, submitted to *Journal of Climate*)
- Quantified the deforestation-driven climate carbon feedback
  (Li Y, et al. Biophysical climate effects of deforestation accelerate tropical vegetation carbon loss, in prepare)

## Short-term Research Goal

<u>Investigate biophysical response to vegetation cover</u>

## Evaluate plant physiological and land surface responses to changing atmospheric CO2

Evaluating the deforestation interaction with the plant physiological response to increasing CO<sub>2</sub>

# Long-term Research Goal

 More deep understanding on the land-atmosphere interaction processes (between vegetation and fire/aerosols/nutrients transport)