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Science motivation and summary
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\\(( C )\// Carbon (C) sink by natural

“¢ J terrestrial ecosystems remains
e Al ol difficult to quantify.
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What has been done:

Country-level C sink by terrestrial ecosystems
and its causing components by 2050 simulated by
12 CMIP5 models under RCP8.5 were estimated
by using a transient traceability framework

What has been found:
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«* The top 20 countries that have highest C sink
has the potential to sequester 62 Pg C in
total; Russia, Canada, United States, China,
and Brazil sequester the most.

» C sink can be traced to four components:
1) Production-driven change (49.5%)

2) Turnover-driven change (28.1%)

3) Interaction between 1) and 2) (7.9%)
4) Change in C storage potential (14.5%)
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Contributions of each component to land C sink
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NPP,: net primary production in 2005; ANPP = NPP in 2050 - NPP in 2005
T,: C residence time in 2005; AT = Cresidence time in 2050 - C residence time in 2005

AX,, = C storage potential in 2050 - C storage potential in 2005
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Future research

Transient Traceability Framework
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Relationship to white paper
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The transient traceability framework can contribute to
improve model performance:

Vegetation carben Soil carbon

¢ Facilitate model intercomparison to help reduce
model uncertainty by decomposing modeled land C sl
storage into traceable components

1850 1800 1950 2000 2050 2100 1850 1900 1950 2000 2050 2100
ear ear

¥ ¥
Jones et al. 2013, J. Clim /
Soil + litter carbon mass Soil + litter carbon change
(CMIP6 models) (CMIP6 models)

Biogeochemically coupled simulation Biogeochemically coupled simulation
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s+ Explore the responses of land C storage to changes
in climate, CO,, N, land use change, etc. and the
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¢ ldentify the differences in land C storage dynamics T
among ecosystems, biomes, regions, etc. and the
mechanisms !

—— CESM2

—— CNRM-ESM2-1
IPSL-CMBA-LR

—— MIROC-ES2L

—— MPI-ESM1.2-LR
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—— NorESM2-LM
—— UKESMI-0-LL
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*» Help benchmark analysis
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