

# Country-level land carbon sink and its causing components by the middle of the 21st century

Lifen Jiang, Junyi Liang, Xingjie Lu, Enqing Hou, Forrest M. Hoffman, Yiqi Luo





# Science motivation and summary



#### Why:

Carbon (C) sink by natural terrestrial ecosystems remains difficult to quantify.

#### What has been done:

Country-level C sink by terrestrial ecosystems and its causing components by 2050 simulated by 12 CMIP5 models under RCP8.5 were estimated by using a **transient traceability framework** 

#### What has been found:

- The top 20 countries that have highest C sink has the potential to sequester 62 Pg C in total; Russia, Canada, United States, China, and Brazil sequester the most.
- C sink can be traced to four components:
  - 1) Production-driven change (49.5%)
  - 2) Turnover-driven change (28.1%)
  - 3) Interaction between 1) and 2) (7.9%)
  - 4) Change in C storage potential (14.5%)





NPP<sub>0</sub>: net primary production in 2005;  $\Delta$ NPP = NPP in 2050 - NPP in 2005 T<sub>0</sub>: C residence time in 2005;  $\Delta$ T = C residence time in 2050 - C residence time in 2005  $\Delta$ X<sub>n</sub> = C storage potential in 2050 - C storage potential in 2005

## **Future research**

## **Transient Traceability Framework**

- CMIP6
- Other MIPs



Jiang et al. 2017, JAMES

# Relationship to white paper

The transient traceability framework can contribute to improve model performance:

- ❖ Facilitate model intercomparison to help reduce model uncertainty by decomposing modeled land C storage into traceable components
- ★ Explore the responses of land C storage to changes in climate, CO<sub>2</sub>, N, land use change, etc. and the mechanisms
- ❖ Identify the differences in land C storage dynamics among ecosystems, biomes, regions, etc. and the mechanisms
- Help benchmark analysis



