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The inclusion of vegetation demography into Earth System Models (ESMs) y
will better represent plant ecology, and vegetation processes that govern |

fluxes of carbon, energy, water.

* However, incorporating dynamic vegetation demography poses huge challenges owing to

their increased model complexity.

 Current issue = global application of dynamic vegetation in ALM

The role of ecosystem heterogeneity and diversity?:
Aggregated “big-leaf” ecosystem vs. demographic;

structured ecosystem means ability to capture
differences in biomass with dry season length.
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Solution Attempts

Examples of near-term development priorities for FATES and progress towards

demographic ESMs:
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(3) Sensitivity analysis of 66 input

parameters into FATES?

 FATES has >200 parameters

* Single site testing in Brazil

 Using Fourier Amplitude Sensitivity Testing
(FAST) = variance based sensitivity analysis.

 Repeatedly found to be important for
carbon dynamics = Vcmax,25; target storage
carbon, stem allometry coef.
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Changes to FATES parameter file
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FATES model (Functionally-Assembled Terrestrial Ecosystem Simulator)?

* Carbon pools, fluxes, allocation; litter fluxes; phenology; regeneration, growth, mortality represented

by ED (Ecosystem Demography Model).

e Canopy physics, soil BGC, land surface hydrology, photosynthesis, respiration represented by ALM. .
* |ncorporates discretized PPA for canopy structure.

* ‘Some’ current development foci:

- Introduction of plant hydrodynamics and competitive plant water uptake
- Librarification of ED code to allow multi-model compatibility (ACME/CESM/ARCOS)

- Sensitivity analysis to input parameters

- Multi-assumption photosynthesis module testing
- Mechanistic mortality algorithms vs. static turnover

(1) Testing radiative transfer schemes:
Discretized Perfect Plasticity Approximation (PPA)
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The Ecosystem Demography (ED) model vegetation
structure, the basis for ALM-FATES. Tracks age and size
of tree “cohorts”, incorporates disturbance , and
dynamic turnover. But these processes can lead to
more model variability.
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—— (4) Processes underlying demographic structure
wy A e Manaus Case Study — testing current plant mortality
 ED2 = over-estimates mortality (4.2%)
lescssomin ol * FATES = over-estimates mortality (3.2%)
Shortest e ZELIG-TROP = similar to observed (1.2%)
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Ideas and future evaluation & testing

climate change in California, over the 215t century.
* We hypothesize that under drought conditions in California the mortality of all trees will increase,
but there will be higher mortality for large trees.

southern California to migrate to northern California.

(2) Testing competition for

water/plant hydraulics and
integration with trait based forest
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Accelerated Climate Modeling

For additional information, contact:
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Testing variations in allometry equations for Western
US evergreen trees* (currently 1 global allometric
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Global vegetation demography developments and science impacts:

Investigate current and future outcomes of FATES as a result of various drought scenarios and

* Secondly, we hypothesize that changing climates in the 215 century will cause the climate of

Testing default FATES in Sierra Forest,
CA, USA. (Single point)

Very low basal area, biomass, and
stem density.

Competitive exclusion of needleleaf
evergreen trees
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