
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. 

Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

CMDV Software: 

SW Engineering Education

Mike Heroux
Senior Scientist
Center for Computing Research
Sandia National Laboratories
Collaborators at this meeting:
Andy Salinger
Anshu Dubey

http://tinyurl.com/HerouxAcme2016

1

Learning

^



Research Methods

Some	relevant	background

2

Scientific Libraries

Miniapps

Benchmark

Libraries & Frameworks
IDEAS2Reproducibility

Libraries & Applications

Productivity & Sustainability

Anshu
Dubey



Code	Complete:	Useful	“Overhead”
§ Code	Complete:	Ultimate	value	is	code.

§ Should	we	only	write	code?
§ Some	non-coding	activities	improve	code.

3

“Plans are worthless, but planning is everything.”
Dwight D. Eisenhower

“Give me six hours to chop down a tree and I 
will spend the first four sharpening the axe.”

Abraham Lincoln



General	Strategy
§ Interview,	analyze,	prototype,	test,	revise,	deploy.	Repeat.
§ Realistic:	There	is	a	cost.

§ Startup:	Overhead.
§ Payoff:	Best	if	soon,	clear.

4

C
os

t

ProgressStart Finish

Old Process
New Process



First	CMDV	SW	Activity:	Interviews

§ Interviews	+	Andy	Salinger:
§ Rob	Jacob,	ANL,	ACME	SE/CPL.	(10/10/16)
§ Balwinder Singh,	PNNL,	ATM	Integrator.	(10/13/16)
§ Todd	Ringler,	LANL,	Ocean/Ice	lead.	(10/13/16)
§ Gautam Bisht,	LBNL,	Land	Integrator.	(10/14/16)
§ Steve	Ghan,	PNNL,	ATM,	leads	other	CMDV.	(10/19/16)
§ Xiaojuan Yang,	ORNL,	land,	junior	member.	(10/20/16)
§ Philip	Cameron-Smith,	LLNL,	ATM,	senior.	(11/2/16)

§ Diverse	cross-section:	Lab,	Component,	Proximity	to	
SE	Group,	Experience.

§ Notes	and	summary	on	Confluence.
5



Some	common	interview	themes
§ Software	challenges	compete	with	other	

high	priority	demands.
§ Urgency	of	science	challenges	is	paramount.
§ Software	improvement	must	be	introduced	carefully,	

with	timely	and	highly	probable	payoff.

§ Challenge	working	with	Git,	especially:
§ Efficient	management	of	simultaneous	development	

of	shared	code.
§ Uncertainty	with	uncommon	but	essential	processes.
§ Uncertain	understanding	of	how	Git really	works.

§ Testing	concerns	mentioned	often:
§ Testing	process	not	uniform.
§ No	standard	test	harness.
§ Groups	evolve	own	testing	approaches.

§ Unit	testing	often	mentioned:
§ Desire	for	quicker,	more	localized	testing,	i.e.,	unit	

testing.
§ Concern	about	feasibility	of	unit	testing.

§ Shorten	the	development	cycle:
§ More	features	with	less	work.
§ Fewer	merge	conflicts.
§ Lower	barriers	for	scientist-developers.

§ Desire	for	better,	more	uniform	developer	
training	and	minimal	skill	levels.
§ Basic	developer	workflows.
§ Coding	standards;	readable,	sustainable	source	code.
§ Effective	commit	log	messages.
§ Tempered	by	concerns	of	too	much	emphasis.

§ Tools	and	processes	should	be	kept	simple,	easy-
to-use:
§ ACME	team	is	diverse,	simplicity	is	important.
§ External	collaborators	can	more	easily	contribute	to	ACME	

and	use	product.

§ Learning	opportunities	should	be	varied:
§ New	team	member	orientation.
§ Face-to-face,	webinars,	individual	learning	plans.
§ On-demand	access	to	software	experts.

§ Programming	for	performance:
§ Basic	performance	concepts.
§ Performance	portability.

§ Challenges	using JIRA	effectively,	especially	in	
the	presence	of	GitHub	issues.
§ GitHub	issues	used	daily,	considered	essential.
§ JIRA	used	less	frequently,	often	an	afterthought.

6

Breakout #2 at 9:50am (Dubey, Wilke)



Learning	Strategies
§ Goal	for	this	meeting:		

§ Make	contacts:
§ Goto http://tinyurl.com/acme2016learn
§ Pick	a	time	to	meet	with	me.

§ Find	out	how	you	learn	best.

§ Possibilities	ways	to	learn:
§ Real-time,	face-to-face?	Software	Carpentry.
§ Real-time,	webinar?	Coordinate	with	LCFs.
§ Recorded,	webinar?	By-product	of	real	time.
§ MOOC,	SPOC?	Udacity,	etc.		Plus	local	expert.
§ Individualized?

§ Slack,	On-demand?
§ Github-based?
§ Audible	(my	favorite	way	to	learn).

§ What	can	work	for	you?	Let	me	know.

7



Clear	learning	subject:	Git
§ Powerful,	challenging.
§ “Defensive”	Git Training
§ Teach	basic	worflows:	yes.
§ Teach	also:

§ Prepare	to	avoid	disaster.
§ Prepare	for	disaster.

§ Practice	disaster	recovery:
§ Create	disaster.
§ Recover.
§ In	safe	setting.

§ How	to	deliver?	To	whom?

8

With Git as your source 
management tool, everyone 
feels stupid.

John Cary



Commitment	to	Quality

Canadian	engineers'	oath (taken	from	Rudyard	Kipling):

My	Time	I	will	not	refuse;	
my	Thought	I	will	not	grudge;	

my	Care	I	will	not	deny
toward	the	honour,	use,	

stability	and	perfection	of	
any	works	to	which	I	may	be	

called	to	set	my	hand.

9

http://commons.bcit.ca/update/2010/11/bcit-engineering-graduates-earn-their-iron-rings



Productivity++	Initiative
Ask:	Is	My	Work	_______	?

https://github.com/trilinos/Trilinos/wiki/Productivity---Initiative

Productivity++

Traceable

In Progress

Sustainable

Improved


Version(1.2(



11

XXX,

Please note: Below is a request for information, not scrutiny of your process. Please read from this perspective.

I am wondering if the change you made below is covered by tests. Specifically, is there anything in the test suite for package X to 
confirm that the changes you made are the changes you intended to make? If not, is there another way you are assuring that the 
change is covered by tests?

I am not asking for the purposes of questioning your process, but I am probing the accuracy of a simple metric and tool I want to 
use for monitoring code quality. Specifically, I would like to scan Git commits to see of a source tree change has a corresponding 
test tree change. But I want to understand the weaknesses of this simple metric if we were to use it. My intention would be to
inform developers about their commits to source without commits to test.

I would appreciate your thoughts on this.

Thanks.

Mike

On 8/13/16, 1:07 AM, "Trilinos-checkins on behalf of XXX XXX" <trilinos-checkins-bounces@trilinos.org on behalf of XXX@XXX> 
wrote:

Branch: refs/heads/develop
Home: https://github.com/trilinos/Trilinos
Commit: xxxxxxxxx

https://github.com/trilinos/Trilinos/commit/xxxxx
Author: XXX XXX <XXX@XXX
Date: 2016-08-12 (Fri, 12 Aug 2016)

Changed paths:
M packages/xxx/src/file1.hpp
M packages/xxx/src/file2.hpp

Recent	email	exchange



12

Sorry Mike. I’ll add a test right now.

XXX,

Please don’t take my request as a spur to write the test sooner than you would otherwise. I 
am really just probing to see if the simple metric I have is a good indicator.

So my question is: My metric (committing to source without committing to test) would suggest 
that the activity decreased software quality in this situation. From your perspective, is this 
true?

Thanks.

Mike

P.S. I guess the Heisenberg Uncertainty Principle applies to software systems as well: Can’t 
probe for quality without changing behavior ☺

I disagree with your assessment. My fix was hasty so I didn’t add a test. I am now 
remedying that.



Summary
§ I	have	experienced	the	“help”	of	SW	Engineering	Experts.

§ Cray	circa	1990,	ASCI	circa	2000
§ Ignored	their	own	process:	

§ Failed	to	elicit,	analyze	requirements.
§ Slapped	on	pre-defined	solutions.
§ Failed.

§ Hopefully	realistic:	This	will	not	be	easy.
§ Goals:

§ ID	biggest	opportunities.
§ Create	content	and	delivery	strategies.
§ Work	with	you.
§ Goto http://tinyurl.com/acme2016learn to	sign	up	to	talk.

§ Final	message:	
§ Aspire	to	improve	on	your	own.
§ I	have	shelf	magnets	J

13


