Drivers and Impacts of Southern Ocean Polynyas in High-Resolution Earth System Models

- Polynyas are areas of open ocean amidst the winter ice pack
 - Regions of strong air/sea heat exchange
 - Strong and long-term impact on deep water masses
 - Polynyas in Weddell Sea occur episodically
- Understanding the drivers and impacts of polynyas on the ocean and atmosphere is important for
 - Predictability of high-latitude climate
 - Understanding the source of mean state bias in models
- Here we study drivers and impacts of polynyas in the Weddell Sea in E3SMv0-HR
 - 0.1° ocean/sea ice
 - 0.25° atmosphere

Gordon et al. (2007)

NASA Earth Observatory

Main Points

- Mechanisms of polynya formation in E3SMv0-HR largely consistent with accepted views
 - Southern Ocean winds
 - Taylor cap dynamics
 - Stratification, sub-surface heat reservoir
 - Weddell Sea Polynyas triggered by Maud Rise Polynyas
- New insights
 - Subsurface heat reservoir caused by reduced surface heat loss
 - Counteracted by ocean heat transport
 - Fundamental imbalance of ice-covered mean state
 - Model warming of 0.1 K/decade stronger than observed 0.03 K/decade (Campbell et al. 2019; Smedsrud 2005)
 - Polynyas responsible for opposing changes in OHT/AHT
 - Reminiscent of Bjerknes Compensation
 - Driven by polynya heat exchange, not by OHT variability

Conclusions

- If build-up of sub-surface heat reservoir is caused by fundamental imbalance of ice-covered mean state, then reoccurrence of Weddell Sea polynyas may be inevitable
 - Even under more stratified conditions
 - Even if warming is 3 times slower than in models
- Need for detailed study of processes controlling heat budget in Weddell Sea to reconcile models with observations

Correspondence

- Wilbert Weijer: wilbert@lanl.gov
- Prajvala kurtakoti: prajvala@lanl.gov
- Zachary Kaufman: zskaufma@ucsc.edu

Publications

- Weijer et al. (2017): J. Clim. **30**, 1629-1641, doi: 10.1175/JCLI-D-16-0120.1.
- Kurtakoti et al. (2018): J. Clim. **31**, pp.9659-9678. doi: 10.1175/JCLI-D-18-0392.s1.
- Kaufman et al. (2020): J. Clim. **33**, 4891-4905. doi: 10.1175/JCLI-D-19-0525.1.
- Kurtakoti et al. (in review): J. Clim.