

Effects of Surface Boundary Layer Mixing on Arctic Ocean Biogeochemistry

Katherine Smith and Luke van Roekel Los Alamos National Laboratory (LANL), LA-UR-22-21148

Background/Motivation

The Arctic Ocean's surface layer is important for many chemical (CO₂/nutrient exchange) and biological processes (nutrient entrainment, bloom dynamics) on regional and pan-Arctic scales

Increased ML shear in semi-diurnal (inertial/tidal) band 2014/15 2014/15

Submesoscale ML entrainment

(Polyakov et al, 2020)

(Levy et al, 2018)

Hypothesis: inertial oscillations, tidal mixing, and submesoscale currents are critical vertical mixing mechanisms for Arctic Ocean surface layer chemical and biological processes

- What are the dominant mechanisms of vertical nutrient entrainment into the Arctic Ocean's surface layer? Are they universal across different Arctic regions?
- Are these mechanisms captured by parameterizations?

Physical Model (Large Eddy Simulation)

We use the Parallelized Large-Eddy Simulation Model (PALM), periodic horizontal boundaries, ITP and NABOS initial conditions, and constant surface forcing applied for 5-10 days

> Inertial/Tidal Domain: 128 x 128 x -128m Inertial/Tidal Computation Grid: 2563 Inertial/Tidal Resolution: 0.5 m

Submesoscale Domain: 20km x 20km x -128m **Submesoscale Computation Grid:** 512 x 512 x 128 Submesoscale Resolution: 40 x 40 x 0.5 m

Initial/Boundary Conditions

Previous Phase 1 InteRFACE Mixing Work

What are the dominant mechanisms of vertical heat transport into the **Arctic Ocean's** surface layer?

(Rainville et al, 2011)

Change in Mixed Layer Heat Content vs Time

Wind erodes salinity stratification buffer

Drives heat into the mixed layer

As the Arctic warms, will there be enough winter cooling?

Initial Results - Submesoscale and Tidal Forcing

Horizontal Slices of Salinity and Nutrients at Surface

Over 5 days, submesoscale currents entrain more unstable front

But do so in a more patchy distribution, while semidiurnal tidal mixing is more well mixed

Vertical Slices of Temperature and Nutrients

nutrients into the mixed layer through upwelling along the

0.03 0.02

Mixed Layer Nutrient Concentration

Submesoscale 0.04 0.01 Time (days)

Next Steps

- Compare Eurasian Basin vs Canadian Basin initial and forcing conditions (strong vs weak stratification)
- Examine wind-driven inertial oscillations (shares semidiurnal band with tidal forcing)
- Explore role of ice-covered vs ice-free boundary conditions (current vs future scenarios)