
Global co-occurring features and their contributions to total and extreme precipitation

Wei-Ming Tsai¹, Suqin Duan¹, Travis A. O'Brien^{2,5}, Jennifer L. Catto³, Paul Ullrich⁴, Yang Zhou⁵, L. Ruby Leung⁶, Zhe Feng⁶, William Boos⁷, D. L. Suhas⁷, Fiaz Ahmed¹, J. David Neelin¹

University of California, Los Angeles¹; Indiana University of California, Davis⁴; Lawrence Berkeley National Laboratory⁵; Pacific Northwest National Laboratory⁶; University of California, Berkeley⁷

	Overview					
U.S. DEPARTMENT OF ENERGY Regiona	al & G	lobal Model Analysis				
accurately, but is of crucial importance working group pursuing explore Coordinated projects led by UC diagnostics—involving the iden pressure systems (LPS), meso AR)—and other leading diagno	ortance atory di CLA and ntificatio oscale d ostic ap	challenging variables for weather for societal impacts. This project l agnostics and metrics to inform the IU aim to bridge the gap between on of features associated with weat onvective systems (MCS), frontal so proaches: (1) spatiotemporal statistic oupling of precipitation to its large-	builds on activities of e improvement of the phenomenon-base her phenomena incl systems, and atmos stics of precipitation			
Task I		Task II	Та			
Create a standardized framework to provide atmospheric feature information by first identifying LPS, MCS, frontal systems, and ARs in observation/ reanalysis and then extend it for climate model output)	Evaluate the contributions by different phenomena to total precipitation and contributions to the probability distributions of precipitation, both in current climate and future changes	Create <u>process-o</u> for the relation of hypothesized lead large-scale therm dynamic environn			
he large-scale environment on circulation, including environme sources of uncertainty and feed	n extrem ental inf dbacks	ic Water cycle and Associated Extra ne events, interactions between co fluence on mesoscale organization to help reduce biases in global mo /IEC both in terms of standards an	nvective scales and , and process-level i del projections. It wi			

ERA5 reanalysis (0.25-deg., hourly)	Feature of
- Atmospheric river (AR) (TECA-BARD; O'Brien et al., 2020)	Atmosph
- Front (FT) (Catto et al., 2013; Sansom and Catto, 2022)	
- Tropical low-pressure system (LPS, 35S-35N)	Fro
(TempestExtremes; Ullrich and Zarzycki, 2017; Vishnu et al. 2020)	Low-pressu
GPM-IMERG + MERGE-IR (0.1-deg., hourly)	Mesoscale syst
 Mesoscale convective system (MCS) 	Non-feature
(FLEXTRKR; Feng et al., 2021)	Deep co Non-deep d

Feature catalogs	Acronym	Data	Variable	
Atmospheric river	AR	ERA5	Vertically integrated vapor transport (IVT)	С
Front	FT	ERA5	wet-bulb potential temperature field at 850 hPa horizontal winds at 850 hPa	F
Low-pressure system	LPS	ERA5	Stream function of horizontal winds at 850 hPa	S
Mesoscale convective system	MCS	GPM-IMERG / MERGE-IR	Brightness temperature (T _b) & precipitation rate (P)	С
Non-feature catalogs				
Deep convection	DC	GPM-IMERG / MERGE-IR	$T_b < CC$ threshold, $P \ge 0.5$ mm hr^1	S
Non-deep convection	ND	GPM-IMERG / MERGE-IR	$T_{b} \ge CC \text{ threshold, } P \ge 0.5 \text{ mm}$ hr ⁻¹	S
Stratiform clouds	ST	GPM-IMERG / MERGE-IR	T₅ < CC threshold, P < 0.5 mm hr¹	S
Drizzle	DZ	GPM-IMERG / MERGE-IR	$T_b \ge CC$ threshold, P < 0.5 mm hr^1	S