Probabilistic Flood Model Downscaling

Samantha Roth¹* Co-authors: Sanjib Sharma², Atieh Alipour³, Klaus Keller¹, and Murali Haran⁴

Thayer School of Engineering, Dartmouth College¹ Department of Civil and Environmental Engineering, Howard University² National Oceanic and Atmospheric Administration³ Department of Statistics, The Pennsylvania State University⁴

*samantha.m.roth@dartmouth.edu

08/08/2024

Riverine flooding harms people and property.

Spatial resolution is important.

Image source: https://www.wbir.com/article/weather/how-to-handle-flooding/51-22511bef-d964-4cfd-b60c-bd89b8c8637b

Downscaling estimates high resolution projections.

5 m resolution flood heights

50 m resolution flood heights

- Flood projections inform decisions about how to manage flood risk.
- Decision-makers often require high spatial resolutions.
- High resolution model runs are computationally expensive.
- Skillful downscaling can tackle this problem.

Our approach combines advantages from different downscaling approaches.

Our approach:

- Specifies different probability models for wet and dry low resolution cells
- Informs models using high resolution elevations and observational data.

Berrocal et al. (2010); Bryant et al. (2023)

• □ ▶ < □ ▶ < □ ▶ < □ ▶ </p>

Downscaling approach	This study	Simple statistical model
Mean absolute error (m)	0.21	.30
95% Pl coverage	0.97	.91
True negative rate	0.99	0
True positive rate	0.93	1
Speed-up compared to	94	217
high resolution model		

*ロト *部ト * ヨト * ヨト - ヨ

Our approach provides probabilistic flood hazard information.

э

Caveats:

- Simulated data
- Single, small study area
- Single flood type
- Single hazard type

Research needs:

- Use Hurricane Ida observations
- Use study areas of various sizes
- Test performance for other flood types
- Extend to other hazards such as fires

- We propose a new approach for probabilistic flood model downscaling.
- Our approach combines:
 - Flood-model specific techniques
 - Model-based uncertainty guantification.
- Our approach achieves advantages of statistical downscaling AND flood model-specific downscaling.

< □ > < 同

This work was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Earth and Environmental Systems Modeling, MultiSector Dynamics under cooperative agreements DE-SC0016162 (PCHES-FRAME) and DE-SC0022141 (PCHES-ADAPT). Additional support was provided by the Penn State Center for Climate Risk Management and the Thayer School of Engineering at Dartmouth College. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US Department of Energy or other funding entities.

- Berrocal, V., Gelfand, A., and Holland, D. (2010). A spatio-temporal downscaler for output from numerical models. *Journal of agricultural, biological, and environmental statistics*, 15:176–197.
- Bryant, S., Schumann, G., Apel, H., Kreibich, H., and Merz, B. (2023). Technical note: Resolution enhancement of flood inundation grids. *Hydrology and Earth System Sciences Discussions*, 2023:1–18.

イロト イボト イヨト イヨト

3

Given information

E_{*L*}: low resolution elevations

E_{*H*}: high resolution elevations

Y_L: low resolution flood heights

Z: Hurricane Ida observations

08/08/2024

S. M. Roth (Dartmouth)

Probabilistic Flood Model Downscaling

Want to estimate

\mathbf{Y}_{H} : High resolution flood heights

S. M. Roth (Dartmouth)

- For each destination cell, a cost-minimizing algorithm is used to find:
 - Least-cost source cell
 - Cost to travel from least-cost source cell to destination
- Cost distance analysis requires:
 - Cost-of-passage to each cell
 - Ours depend on elevation
 - Labeled source cells

$$c_{14} + c_{48}$$

Foundation: ?, see for example ?

ъ

9/9

Probabilistic downscaling for flood models

S. M. Roth (Dartmouth)

Probabilistic Flood Model Downscaling

9/9

Method summary

S. M. Roth (Dartmouth)

08/08/2024

Our approach estimates the high resolution well

Downscaling approach	Ours	Simplified Berrocal et al. (2010)
Low resolution: 50 m		
Mean absolute error (m)	0.21	.33
95% Pl coverage	0.96	.92
Sensitivity	0.87	1
Specificity	0.98	0
Low resolution: 30 m		
Mean absolute error (m)	0.21	.30
95% Pl coverage	0.97	.91
Sensitivity	0.93	1
Specificity	0.99	0
Low resolution: 10 m		
Mean absolute error (m)	0.03	0.13
95% PI coverage	1	.90
Sensitivity	0.99	1
Specificity	0.99	0

Errors occur at wet-dry boundary

Starting at:

• 10 m:

• 30 m:

S. M. Roth (Dartmouth)

Our approach provides flooding probabilities

9/9

• Time to downscale starting with each resolution:

- 50 m: 43.62 seconds
- 30 m: 43.37 seconds
- 10 m: 37.33 seconds
- Mean time to get projections at each resolution:
 - 50 m: 7 seconds
 - 30 m: 33 seconds
 - 10 m: 5.9 minutes
 - 5 m: 2 hours
- Time difference influenced by:
 - Region size
 - Hydraulic model
 - Model parameters

< □ > < 同

Table: Downscaled Projections VS High Water Marks

Downscaling approach	Ours	Simplified Berrocal et al. (2010)
Low resolution: 50 m		
Mean Absolute Error (m)	0.50	.33
95% PI Coverage	0.85	.95
Low resolution: 30 m		
Mean Absolute Error (m)	0.27	.25
95% Pl Coverage	0.95	.85
Low resolution: 10 m		
Mean Absolute Error (m)	0.09	0.10
95% PI Coverage	.95	.90

9/9

< □ > < 同

Our approach estimates observations well

Starting at: • 10 m:

• 30 m:

3

Our approach generalizes to other flood events

Discharge ($\frac{m^3}{s}$)	2503.21	2559.84	3681.19
Downscaling from: 50 m			
Mean Absolute Error (m)	0.20	.21	.30
95% PI Coverage	0.98	0.97	0.96
Sensitivity	0.85	0.87	0.89
Specificity	0.96	0.95	0.99
Downscaling from: 30 m			
Mean Absolute Error (m)	0.15	0.16	0.29
95% PI Coverage	0.99	0.98	0.92
Sensitivity	0.87	0.88	0.93
Specificity	0.98	0.97	1
Downscaling from: 10 m			
Mean Absolute Error (m)	0.025	0.032	0.054
95% PI Coverage	1	1	1
Sensitivity	0.98	0.98	1
Specificity	1	0.99	0.99