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Extreme Precipitation Has Significant Consequences
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Oroville Dam spillway overflowing in February 2017 
following an atmospheric river event in California

Flooding after Hurricane Harvey in August 2017

Can we use machine learning-based detection 
algorithms to automate the classification of synoptic 
weather features such as fronts, ARs, TCs, and MCSs?
Using a combination of new and existing ML algorithms 
applied to observations and climate model output.

PERSPECTIVE RESEARCH

Earth system models48. Overall, we identify five major challenges and 
avenues for the successful adoption of deep learning approaches in 
the geosciences, as follows.

(1) Interpretability
Improving predictive accuracy is important but insufficient. 
Certainly, interpretability and understanding are crucial, including 
visualization of the results for analysis by humans. Interpretability 
has been identified as a potential weakness of deep neural networks, 
and achieving it is a current focus in deep learning49. The field is 
still far from achieving self-explanatory models, and also far from 
causal discovery from observational data50,51. Yet we should note that, 

given their complexity, modern Earth system models are in practice 
often also not easily traceable back to their assumptions, limiting 
their interpretability too.

(2) Physical consistency
Deep learning models can fit observations very well, but predictions 
may be physically inconsistent or implausible, owing to extrapo-
lation or observational biases, for example. Integration of domain 
knowledge and achievement of physical consistency by teaching 
models about the governing physical rules of the Earth system can 
provide very strong theoretical constraints on top of the observa-
tional ones.
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Fig. 2 | Four examples of typical deep learning applications (left 
panels) and the geoscientific problems they can be applied to (right 
panels). a, Object recognition in images links to classification of 
extreme weather patterns using a unified convolutional neural network 
on climate simulation data41. b, Super-resolution applications relate to 
statistical downscaling of climate model output72. c, Video prediction is 

similar to short-term forecasting of Earth system variables. Right image, 
courtesy of Sujan Koirala and Paul Bodesheim, Max Planck Institute for 
Biogeochemistry. d, Language translation links to modelling of dynamic 
time series (ref. 96 and figure 11 in ref. 97). Left image, courtesy of Stephen 
Merity (figure 1 in https://smerity.com/articles/2016/google_nmt_arch.
html).
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Figure 3. The training loss (a) and training accuracy (b) for each
training epoch of the DL-FRONT NN over three cross-validation
folds.

loss and accuracy results of the training. The training and ac-
curacy curves indicate that the network training appears to be
converging on solutions that are not overfit to data and have
an overall categorical accuracy of near 90 % (percentage of
CSB fronts identified by DL-FRONT). Fold 3 produced the
lowest loss and highest accuracy so those weights were se-
lected as the final result. We used the final result network to
generate 37 984 3-hourly front likelihood data grids covering
the entire 2003–2015 time span.

A sample output of the DL-FRONT algorithm and the cor-
responding CSB front locations for 1 August 2009 at noon
UTC (a period not used in training) is shown in Fig. 4. The
DL-FRONT results are very similar to the CSB fronts in
terms of the general locations. There are spatial discrepan-
cies that are sometimes large enough that the front locations
do not overlap, and there are several discrepancies regard-
ing the type of front. The DL-FRONT results are missing a
Pacific coast cold front and a western mountains stationary
front from the CSB observations. DL-FRONT identifies ad-
ditional fronts in the Pacific Ocean and on Baffin Island in

Figure 4. Side-by-side comparison of CSB (a) and DL-FRONT
(b) front boundaries for 1 August 2009 12:00:00. The CSB fronts
were drawn three grid cells wide. The intensities of the colors for
the different front types in the DL-FRONT image represents the
likelihood value (from 0.0 to 1.0) associated with each grid cell.

the Arctic; these are beyond the areas regularly analyzed for
fronts by the National Weather Service shown in Fig. 2.

4.2 Metrics

The trained network was evaluated by calculating the met-
rics discussed below for both the 2003–2007 training data
and the 2008–2015 validation data. We combined the results
for the four different front types to produce a two-category
front/no-front dataset and produced metrics for the same two
date ranges. The same region mask used for training was used
when calculating the metrics.

4.2.1 Actual and predicted grid cell counts

The percentage of grid cells in the five different types is
shown in Table 1 for the CSB and DL-FRONT. In the CSB,
the percentage of grid cells categorized as front is in the range
of 12.3 %–12.6 % for the training and validation periods. The
DL-FRONTS algorithm identifies fronts in 11.7 %–11.9 % of
the grid cells. Thus, there is a slight undercount but little dif-
ference between the training and validation periods. The per-
centage of the different frontal types is similar between the
CSB and DL-FRONT except for warm fronts, which are un-
dercounted by DL-FRONT. Table 1 also shows that there is
a major asymmetry between the front type categories, with
⇠ 88 % of the grid cells falling into the no-front category.

4.2.2 Categorical accuracy

The categorical accuracy is a measure of the fraction of in-
stances where the neural network predicted category matches
the actual category for some set of samples. This is the sum
of the diagonal elements of the confusion matrix (see below)
divided by the total number of cells. The results for the full
output and front/no-front output for the two time ranges are
shown in Table 2. The results appear to indicate that there is
no appreciable reduction in neural network performance with
the validation dataset compared to the training dataset.

The large asymmetry between the no-front category and
the other categories reduces the utility of this metric, since a
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warm, stationary, occluded, and none categories. Each label
vector is assigned one and only one category by giving the
appropriate element a value of 1 and the others a value of
0. The elements of each predicted vector contain values be-
tween 0 and 1, inclusive, which are the estimated category
likelihoods for that cell. The lower the likelihood value in
the predicted vector for the category marked as correct in the
label vector, the larger the contribution to the loss. The per-
category weights are used to adjust the relative significance
of the contributions from the different categories. Approxi-
mately 88 % of our data grid cells have no front present, so
the loss function is at risk of being dominated by the con-
tribution of the none category. Reducing the weight for the
none category relative to the weights for the other categories
will make the loss function less sensitive to that category.
Similarly, increasing the weight for a seldom-seen category
will make the loss function more sensitive to that category.

The Adam adaptive moment estimation technique
(Kingma and Ba, 2015) is the loss minimization strategy used
when training the network. Adam is a form of stochastic gra-
dient descent (SGD) that has been shown to perform well in
a variety of networks. As with most SGD techniques, Adam
has a primary initial learning rate parameter. The learning
rate sets the initial magnitude range of the changes to the
network weights and biases.

We implemented the DL-FRONT network in Python us-
ing numpy (van der Walt et al., 2011) and the Keras deep
learning library (Chollet, 2015) on both Tensorflow (Abadi et
al., 2015) and The Theano Development Team et al. (2016)
(Bergstra, 2010) computational backends. The training appli-
cation made use of the scikit-learn package (Pedregosa et al.,
2011) to provide k-fold cross-validation and hyperparame-
ter search. The “outer” network parameters such as learning
rate, number of layers, etc. are referred to as hyperparame-
ters. A significant part of the time spent developing a NN is
devoted to optimizing the hyperparameters.

We initially chose a network based on 2-D convolution
layers with 5 ⇥ 5 kernels because of the structural similar-
ity we saw between a layer of this sort and a finite-difference
second-order spatial derivative function. The visual front de-
tection task described at the beginning of this section, if ex-
pressed mathematically, can be thought of as synthesizing
the results of various spatial derivatives of the different input
measurements at each point in the data grid.

We experimented with the basic architecture with a series
of hyperparameter searches using training runs of 100–200
epochs over a 1-year batch of data. An epoch is one full pass
through the training data. The experiments used the scikit-
learn GridSearchCV function to perform multiple training
runs, each with a different combination of learning rate, cat-
egory weights, number of 2-D convolution layers, sizes of
layer kernels, and numbers of filters in layer kernels. The hy-
perparameter combination from these experiments that pro-
duced the best validation accuracy and loss was chosen for
training for 1200 epochs over 5 years of data. The details of

Figure 1. Schematic of the DL-FRONT 2-D CNN architecture. The
five category input data grid on the left contains the five input sur-
face meteorological 2-D fields (temperature, humidity, pressure, u-
component of wind, v-component of wind). The five-category out-
put data grid on the right contains five 2-D likelihood estimates
for the five front categories (cold, warm, stationary, occluded, and
none).

these experiments are outside the scope of this paper. The
amount of time required to do an exhaustive search of all
hyperparameter combinations and ranges makes such a task
impractical. The highest accuracy and lowest loss in training
and validation out of the experiments we performed was with
the network described below.

Figure 1 shows a schematic of the resulting DL-FRONT 2-
D CNN architecture. At the far left of the figure is the input
data grid, which is composed of five “feature maps” of 2-
D meteorological fields (as compared to three feature maps
of 2-D color fields for an RGB image) on a 1� geospatial
grid. These meteorological fields are 3-hourly instantaneous
values of air temperature at 2 m, specific humidity at 2 m, air
pressure reduced to mean sea level, the east–west (u) compo-
nent of wind velocity at 10 m, and the north–south (v) com-
ponent of wind velocity at 10 m. The meteorological fields
were obtained from the Modern-Era Retrospective Analy-
sis for Research and Applications, Version 2 (MERRA-2;
Gelaro et al., 2017) and were sampled on a 1� latitude–
longitude grid over a domain of 10–77� N and 171–31� W.
We obtained 37 984 sets of grids for the time span 2003–
2015.

The first network layer is a composite of a 2-D zero-
padding layer, a 2-D convolution layer with a 5⇥5 kernel and
80 filters, a ReLU activation layer, and a 50 % 2-D dropout
layer. The output of this layer is a data grid that has the same
spatial extent and 80 abstract feature maps. The next two lay-
ers have the same basic structure, producing output data grids
with 80 feature maps that have the same spatial extent as the
original input data grid.

The fourth network layer is different from the other three.
This layer is a composite of a 2-D zero-padding layer, a 2-
D convolution layer with a 5 ⇥ 5 kernel and 5 filters, and
a softmax activation layer. The output is a data grid with 5
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DL-FRONT: 
Machine 
learning-based 
frontal 
detection 
algorithm
(Biard and 
Kunkel, 2019)

ß Training and 
identifying different front 
types in reanalysis data

Applying trained algorithm 
to 3hrly CESM output to 
detect fronts

ß
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Detection of Extreme Precipitation Events: ARs and TCs

ClimateNet: Machine 
learning-based 
detection algorithm for 
atmospheric rivers and 
tropical cyclones
(Prabhat et al., 2020)

Applying trained algorithm to CESM 
output to detect ARs and TCs 
Led by John Truesdale, NCAR

ß
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Detection of Extreme Precipitation Events: MCSs

Train a deep learning model to detect mesoscale convective systems (MCSs) using 
similar input fields to frontal detection algorithm.
Led by Maria Molina, NCAR

MCS labels using TempestExtremes



Summary and Next Steps
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Next Steps:

● Validating the output of the machine 
learning models

● Connecting precipitation extremes with 
weather events

● Interpretation methods

● Resolution dependence of feature 
detection

● Inference on future climate states

White Paper Discussion:

● Causal relationships between synoptic-
scale features and extreme events

● Machine learning approaches to 
understanding Earth system variability

● Application of high resolution modeling

● Development of frameworks for 
computationally efficient analysis


