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ABSTRACT RESULTS AND DISCUSSION

Earth System Models (ESMs) included in the Coupled-Model-Intercomparison Project (CMIP) are Model Temperature & Precipitation Individual Mode! Bias: Mean Annual Flow Cumulative Model Bias: Inverse Percentile
considered sophisticated in their ability to project the impacts of future climate on important hydroclimatic _ " Miein s P - T5 Maan Assuisl Fow - Ak * Precipitation-Temperature biases for
variables and Earth system processes. However, little is known about their performance against S R CMIP6 models indicate fairly equal
observations across standard hydrological metrics, which hampers our ability to understand their actual " . F | ; ey ke representation across four
utility for simulations under a changing climate, particularly for high-latitude environments due to Arctic : : f 44 - i e . 82 quadrants

amplification. We assess the performance of simulated Arctic runoff that has been routed to river s : : " : A v} 7 ) - CMIP& models tend to be biased low
channels using a physically based river routing model, Model for Scale Adaptive River Transport : ; ; | W =i e b relative to observations  with
(MOSART), from eleven CMIP6 models. Models were evaluated using metrics to assess model skill for : : - == . o noticeably higher wvariability in
representing total volume, variability, seasonality, extreme events, and overall distributions, which are . e : . = _ z Earth3, GFDL, MRI and CanESMS5;
evaluated over multiple timescales (e.g. daily, monthly, and annual) across the Pan Arctic. Data are 3 L 1 | o T PN i N lower in BCC

compared to observations from medium-to-large nver basins (>10,000 km2, n = 611 gages), as the . : f i 2 g { P T High biases tended to persist
coarse resolution of ESMs prohibits comparison for smaller river basins. Our results indicate that while : L* g e e, o [ e through individual metrics mean
one-lo-one comparisons between ESMs and observations usually result in poor performance, : ¥ A Ay ol O SUE annual flow and Q100 high flows,
particularly at the daily scale, the ESMs demonstrate some skill in prediction at coarser timesteps or . Pyl o PO i although 7Q10 low flow and center
when techniques such as statistical averaging and best-fit model selection were used. We are also able . 3OC  CAE  Eaed  OFO N o2 CrEl P . i . — O timing biased low for most models

to highlight some spatial structure in the performance of the models for the different metrics. This work is Correlation Coefficient
anticipated to be highly useful for understanding the most appropriate applications for ESM streamflow

when attempting to understand how Arctic hydrology will change under a future climate. - = == : ; : _ _ - . ' [J’
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» Takes in 0.5-deg runoff from CMIP6 % ; A\ e 4 A bl ._ . _ ,
« Divides water into hillslope runoff, ' HASY BT A "HEN Y ot £ A Loy O . ' |
surface/subsurface tributaries, channel flow By Wt o = ' : ‘ AR

» No exchange between land and atmosphere

BFTS BFAA MMTS MMAA

= Note: MMTS = multi-model mean time series, BFTS = best-fit model time series, MMAA = multi-model mean annual average, BFAA = best-fit model annual average comparisons
: . * Model performance generally poor at daily timestep with some regional exceptions except when BFAA technique is used; general model improvement at monthly timestep
Observations * Annual timestep and interior Canada sees lower performance for capturing variability (PCC & NSE) but better at capturing model bias (nRMSE)
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