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Motivation: Monsoons produce most rain over low-latitude land. We want to
improve predictive, process-level understanding of that rainfall
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Project goals

- Improve understanding of synoptic-scale vortices & waves in
monsoons and their interaction with seasonal-mean flow

- Understand the distribution of precipitation produced by these
disturbances, and project future forced and unforced variations

- Increase the range of states in which metrics & models can be applied
by studying both North American & South Asian monsoons



Project goals

- Improve understanding of synoptic-scale vortices & waves in
monsoons and their interaction with seasonal-mean flow

- Understand the distribution of precipitation produced by these
disturbances, and project future forced and unforced variations

- Increase the range of states in which metrics & models can be applied
by studying both North American & South Asian monsoons

... how, 3 highlights of recent results



1. Monsoon depressions
Intensify because of:

- barotropic instability
- meridional moisture advection

- wind-enhanced ocean
evaporation
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1. Monsoon depressions
Intensify because of:
- barotropic instability
- meridional moisture advection
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2. Synoptic-scale monsoon vortices are best tracked using the

streamfunction of the horizontal wind
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2b. Apparent large
decrease In
MOoNSooN
depression counts
may be artifact of
changes in
observing network

Stars mark year in which
geostationary satellite
data was incorporated into
the underlying datasets

Vishnu et al. (2020)

(a) Sikka (hand-analyzed dataset)
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3. Fine-scale orography organizes a previously unrecognized climate
regime: Autumn monsoons

Ramesh et al. (submitted)

fraction of rain falling in autumn & winter (red > 50%)
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Summary: Monsoon Extremes project

Results to date: Some products:

1. Fundamental dynamics of monsoon

. Global ensemble dataset of tropical
depressions

low pressure system tracks

2. ldentification, tracking & analyses of First track dataset of tropical upper-

* Monsoon depressions tropospheric troughs in North
- tropical upper-tropospheric troughs American monsoon

* moisture surges | |
|dealized cloud-resolving model

3. Influence of fine-scale orography on that is easily linearized & used with
precipitation imposed basic states

4. Assessing model bias: atmospheric moist

energy budget
boos.berkeley.edu




