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It remains unclear, however, how 
dependent these older iESM results 
are on the particular land surface 
model coupled to GCAM. Here we 
use a one-way coupling to 
examine how sensitive GCAM 
outputs are to the choice of 
driving model. This allows us to 
both quantify and decompose the 
variability in GCAM outputs across a 
wide range of ESM conditions. 

Objective 

Coupling a Earth System and Integrated Assessment Model 
The previous Integrated Earth System Model (iESM, Collins et al., 2015) project linked an 
Earth System Model (CESM) with GCAM, an integrated assessment (human systems) 
model. It found that climate feedbacks on the terrestrial system increased ecosystem 
productivity, resulting in declines in cropland extent and increases in bioenergy production 
and forest cover. Similarly, ACME includes experiments to understand interactions between 
climate and human systems in both the carbon and water cycles.  
 

The Agricultural Model Intercomparison 
Project (AgMIP) provides globally 
gridded yield projections generated by 
seven different crop models, forced 
with five different climate models. The 
Couple Model Intercomparison Project 
(CMIP5) includes both emissions- and 
concentration driven ESM runs 
following RCP 8.5. 
 
Yield indices computed from from the 
AgMIP and CMIP5 model outputs were 
passed into GCAM, Version 4.2. GCAM 
is a global integrated assessment that 
simulates the economy, energy system, 
agriculture system, land use, and the 
climate system in an internally 
consistent fashion. GCAM climate 
outputs are based on MAGICC. 

Approach 

Significant changes in GCAM agricultural land allocation 

Impact 

Figure	3	(le+).	GCAM-
produced	atmospheric	CO2,	
as	computed	by	MAGICC.	
Each	line	shows	a	different	
GCAM	run	driven	by	AgMIP	
and	CMIP5	model	outputs.	
Insert	box	shows	
normalized	(relaGve	to	the	
control	run)	data.	
	

Figure	4	(right).	Analysis	of	variance	for	CO2.	
Terms	include	experiment	(concentraGon-	vs.	
emissions-driven	RCP	8.5);	group	(AgMIP	
versus	CMIP5);	model	(e.g.	CESM-CAM5	
versus	CESM-BGC);	model	center	(e.g.	CESM	
versus	GISS);	and	CMIP5	ensemble.	

Figure	2.	Raw	scalar	data	(aboveground	producGvity	
change,	i.e.	NPP	change	from	2005)	passed	into	
GCAM.	Each	line	is	a	single	model,	ensemble,	and	
experiment	combinaGon	for	AgMIP	(top	panel)	and	
CMIP5	(boRom).	

GCAM driven by CMIP5 and AgMIP model outputs 
	

Figure	5.	Regional	agricultural	land	cover	changes	
in	2100.	Each	panel	shows	the	distribuGon	of	2100	
agricultural	area	in	GCAM	driven	by	AgMIP	and	
CMIP5	runs–for	each	model,	experiment,	and	
agro-ecological	zone–compared	to	the	control.		

GCAM consistently reallocated land from 
agriculture to other land-use types when 
driven by CMIP5 outputs. This is consistent 
with the CMIP5 models’ increasing C storage, 
which allows GCAM to produce the same 
amount of food in smaller land areas. This 
effect varied considerably at the regional 
scale: tropical regions such as Brazil, west 
Africa, and southern China exhibited large 
allocation shifts (Figure 5); agricultural gains 
and losses in the the U.S. and Canada were 
relatively symmetrically distributed; and 
Russia’s land allocation to agriculture 
expanded in many model runs. In all cases, 
AgMIP-driven runs clustered more evenly and 
tightly around the no-change control case. 


