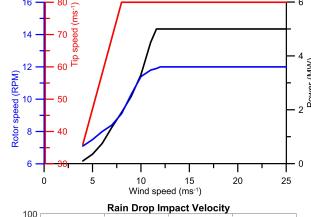
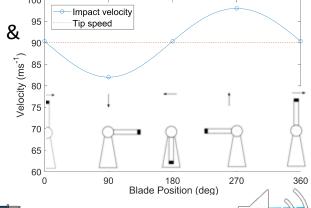
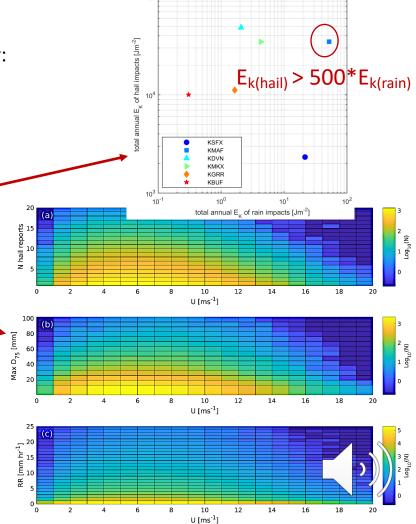
WRF Modelling of Deep Convection & Hail. R.J. Barthelmie, F. Letson, T. Shepherd, & S.C. Pryor

- High societal importance (insurance, energy infrastructure etc).
- Our application: Predicting wind turbine blade leading edge erosion
 - Negative impact on LCoE (\$billions/yr?)
 - Loss of power production. Increase in O&M costs
 - 'Fixes' (tapes) also cause loss of power production.
- Wind turbine blade leading edge erosion
 - f(Wind speed) ∴ rotor speed ∴ closing velocity (kinetic energy)
 - **f**(Precipitation rate) ∴ # impacts
 - **f**(Hydrometeor type) ∴ material response

• f(Hydrometeor diameter) ∴ fall velocity, momentum exchange &

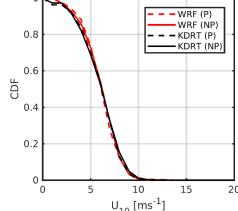

material response




A Framework for Improving Analysis and Modeling of Earth System and Intersectoral Dynamics at Regional Scales

WRF Modelling of Deep Convection & Hail

- Empirical estimates of accumulated kinetic energy transfer:
 - RADAR for RR, hail occurrence & 75th percentile hail diameter (D₇₅)
 - RADAR or ERA5 for wind speed
 - DSD: Marshall-Palmer for rain & exponential (hail)
- In SGP: Results
 - Dominance of hail in KE transfer (*Wind Energy Science* **5** 331-347).
 - Joint probabilities heavy RR & large hail frequent & high RPM wind speeds (*J of Physics* doi:10.1088/1742-6596/1618/3/032046).
- Research questions:
 - Can WRF be used to PREDICT likely severity of LEE?
 - Does WRF exhibit fidelity v. RADAR/ASOS:
 - Marginal probabilities of drivers?
 - Joint probabilities of drivers (e.g. Pr{hail|U})?


 Spatial variability in joint probabilities?

 SIMULATIONS W/ MILBRANDT-YAU MICROPHYSICS

WRF Modelling of Deep Convection & Hail

- 8 June 2 July 2014:
 - Positive bias in reflectivity & hail occurrence.
 - Wind speed (10-m) v ASOS: corr = 0.63
 - Precipitation: CDF from RADAR reproduced
 - Wind speed: CDF | PPT reproduced

RADAR Hail: Odds ratio (θ) > 1 skillful

$$\theta = \frac{1}{1 - H} / \frac{1}{1 - F}$$

□ RADAR stations 100-km radii selected ASOS stations 2500 m elev. 2000 m elev. 1500 m elev. 100° W 1000 m elev. CONUS WTs KEWX IC w/in 100 km # hr w/ hail θ: All θ: Intense

2	0		
_	_		

$$\overline{F}$$

KDYX

KEWX

KFDR

KFWS

2833

0

1111

6

2360

1895

1792

59

49

64

4.80

2.79

4.91

9.35

11.5

2.49

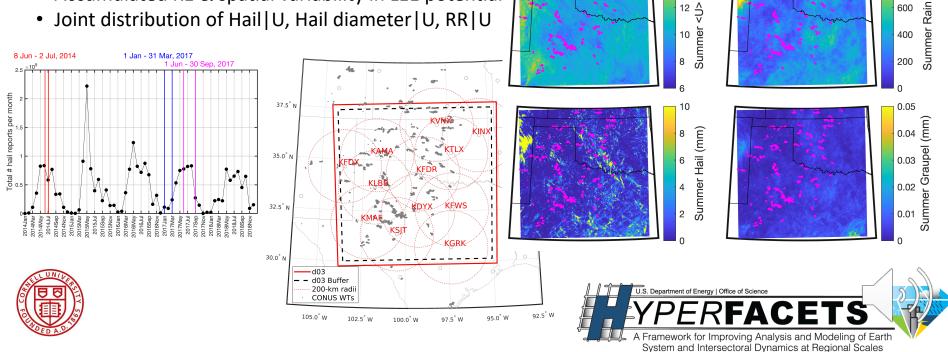
94

48

2.66

0.89

1.06


WRF Modelling of Deep Convection & Hail: 1 Jan-31 Mar 2017, 1 Jun-30 Sep 2017

- Clear spatial gradients in LEE drivers!
- Further evaluation (with larger sample):
 - Is positive bias in REFL & hail pathological for MILBRANDT-YAU? (fully double moment)

• LEE drivers & wind gusts (v ASOS)

Accumulated KE & spatial variability in LEE potential

