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Oceanographic Modeling Suite

Development of Wa\(/je set-up ; Circulation and Historic
wave field in the conditions 2-way thermal
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Terrestrial Model

Thermal Model — requires geometry

« 3D thermal PDE’s implemented in Albany evolve o > Thermal
temperature and ice saturation in permafrost ‘

 Developed thermal properties from mixture models of it ;
constituent material properties 2N Ocean ||| Icewedge | Permafrost |\ ZONARE

 Applies temperature B.C.s and salinity / water contact
history

30m

Ice saturation

Mechanical Model—requires ice saturation
» Albany is a 3D finite deformation plasticity model
« Domain will deform according to computed stress
« Domain changes geometry according to failure criteria

..........

Eroded geometry

Schwarz framework—coupling
* Iterative approach—independent solutions (therm/mech)

» There is no direct dependence between mechanical and
thermal PDE’s; dependence is achieved through the
material model

Mechanical <

This modeling framework uniquely allows for any form of material deformation




Research Challenges

How can we improve estimates of TOC fluxes from 9 km coastline @ Drew Point
geochemical and sediment land-to-ocean  ~equivalent to TOC fluxes from largest rivers draining
fluxes from coastal Change? North Slope (e.g. Sagavanirktok or Kuparuk)
ol How can we improve and expand upon
:i.. i . .- characterizations of temperature dependent
o permafrost strength?
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What measurements are needed to ensure IV NP g
model accuracy over a wide variety of . S
environments? | LR L |

- 12august2019vs15august2019
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How can we upscale erosional processes
when they are so dependent on local
conditions (storms, material properties, etc.)?
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How do we downscale boundary conditions,
l.e. how accurate is “accurate enough™?




