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Time Resolution In Ocean Models

• Multiresolution meshes allow to resolve areas of interest at finer scales.

Future developments require increases in resolution difference.

• Explicit time stepping methods couple the global time step to the size 

of the smallest grid cell (restricted by the CFL condition).

• Long term stability and conservation (over decades) of the scheme is essential.

Research question:

Investigate different time discretization methods that allow for:

• Large time steps independent of the CFL.

• Accurate resolution of conserved quantities (mass, energy, etc.).

• Decoupled time-discretization in different regions.

Hypothesis: Exponential time differencing enables large time steps while retaining conservation properties 

and efficiency. Domain decomposition decouples different temporal scales in subdomains, enabling further efficiencies.

Hypothesis

Developments Required

Expected Impact

ETD For Rotating Shallow Water Equations 
• The rotating shallow water equations: Hamiltonian    , and 

skew-symmetric operator  , where

• Equations are split into linear and nonlinear parts:

• Approximate remainder, e.g. ETD-Euler (higher order 

possible):

• Reduce the size of matrix functions by Krylov Methods:

Structural Properties For Conservation:

• ETD methods conserve mass to machine precision.

• Operator is skew-symmetric with respect to symmetric 

operator     . Symmetry corresponds to energy 

conservation.

• ETD-wave (ETDW): Evaluate Jacobian at resting state

• Skew-symmetry of with respect to special inner product. 

Pros & Cons: Allows for the use of the           Skew-Lanczos

iteration compared to the             Arnoldi iteration; lower 

convergence order.

Test Case Results
Energy Conservation Results

• Energy conservation to a time discretization error while 

maintaining time step sizes above the CFL limit (Table 1).

• ETD2W yields a computational speed-up over RK4, while 

maintaining a constant energy resolution error.
Long Term Stability: Double Gyre Test Case

• Stability of ETD2W maintained over one year in double-

gyre test case (Figures 1 & 2).

• Meshes with increasing resolution resolved at a coarsest 

time scale (Table 2).

Ongoing Investigation
• Multiresolution, faster, and parallel matrix functions.

• Explore different choices of the linear operator (stability, 

conservation, and computational efficiency).

Table 3. Errors between global/localized ETD2 solutions
and the exact solution for 2D diffusion problems. Numbers
of Schwarz iterations shown in brackets.

Table 4. Computational cost per time step of global ETD2 and non-iterative

L-ETD2 (with 10 procs) for the 1D SOMA test case, max Δx = 1431.35m.

Figure 1. 
Velocity 
(vectors), 
relative vorticity 
(density), and 
energy for 
double gyre test 
case  for one 
year on 8 km 
grid using 
ETDW2. Bottom 
drag constant 
c=-1E-6. This 
test case 
consists of a 
circular ocean 
with a variable 
bathymetry, 
wind forcing in 
the zonal 
direction, and a 
single layer. 

Table 1. Energy conservation for Gaussian pulse 
on SOMA geometry for 12 hours and for various 
grid resolutions. RK4 (top) and ETDW2 (bottom). 
KV is the number of Krylov vectors per internal 
stage. The first row for RK4 is the CFL compliant 
step, the rest are one half of CFL compliant.

Time Step Selection Based On Accuracy Requirements

• CFL Mitigation: Time step size chosen based on accuracy not stability.

Nonuniform Time Step Size Selection by Domain Decomposition
• Treatment of Domain Specific CFL Conditions: Time step selection corresponding to local 

mesh size through domain decomposition.

• Increased Work Distribution: Local time stepping allows processors to be distributed based 

on mesh coarseness and time step size in each subdomain. 

Impacts

• Coastal Refinement: Resolving coastal areas becomes feasible from a performance 

standpoint.

• Time Scale Splitting: Improved treatment of baroclinic and barotropic modes combining ETD 

and split-explicit method.

• Coupling to local high-resolution models: coastal (tidal / estuary) models for accurate 

modeling of inflows and tides.

Table 2. Wall times for double gyre test 
case for one year. RK4 (top) and ETDW2 
(bottom). KV is the number of Krylov
vectors per internal stage. 

Figure 3. Density function used for mesh generation and
overlapping subdomains for the 1D shallow water test case.

Figure 2. Energy for double gyre over one year (ETDW2, time step 200s).

• Coupling by Dirichlet

BCs at local interfaces.

• Parallel Schwarz 

iteration applied at each 

time level (Method 1) or 

over whole time interval 

(Method 2).

Parallel Implementation of ETD

• The spatial domain is decomposed into overlapping sub-
domains.

• Phi-functions and residual localized to each subdomain.

Coupling of The Subdomain Problems

Method 1: Space L-ETD2 First discretize globally in time, 
then apply domain decomposition at each time step:

Pros & Cons: Cheap cost per iteration, fast convergence 
but only works for conforming time grids.

Method 2: Space-Time L-ETD2 Discretize in time separat-
ely in each subdomain and perform global-in-time domain 
decomposition:

Pros & Cons: Different time steps in different subdomains, 
super-linear convergence on short time intervals; larger
cost per iteration.

• The larger the overlap size, the faster the convergence.

Numerical Performance of Localized ETD

1. Two Dimensional Diffusion Equation (Table 3)

• L-ETD2 solutions reach the same accuracy as the global
ETD2 after a few iterations.

• Method 1 seems more efficient than Method 2 on 
conforming time grids.

2. One Dimensional Shallow Water Equation (Table 4)

• Significant speed-ups by L-ETD2 compared to Global 
ETD2, especially  with nonuniform meshes (Figure 3).

• L-ETD2 solution conserves mass.

Future Work

• Implementation of L-ETD with nonconforming time grids 
& non-uniform meshes for the 2D SOMA test case.

• Nonoverlapping domain decomposition with more general
transmission conditions and optimized parameters.


