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Radiation Is still uncertain
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Key points:

High-resolution surface radiation, temperature,
orecipitation, humidity, winds are likely to be
important drivers of surface processes, especially
in the Arctic.

Topography and microtopography controls on
surface radiation budgets have large potential
impacts in permafrost landscapes (next slide).
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What does “high-resolution ESM gridcell” mean for the Arctic?
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Observations illustrate
Interactions among terrain,
vegetation distribution, and snow.
Surface radiation plays an
Important role in these
Interactions.
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Detailed studies in several Arctic
tundra watersheds on Alaska’s
Seward Peninsula (NGEE-Arctic)




Teller watershed: 2.3 km? HUC-12 containing the Teller watershed: 140 km?
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Impact of surface heterogeneities on land surface
fluxes and states in simulations using an
uncoupled, hyper-resolution land surface model

Gautam Bisht and William Riley

Earth & Environmental Sciences Division,
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Research objectives

Local surface topographic features (e.g. slope, aspect), as well as,
non-local topographic features (e.g. terrain shading, sky view
factor), impacts total amount of solar radiation reaching the
Earth's surface. Yet, the ACME land model assumes a flat Earth

with an unobstructed view of sky.

1. How does surface
heterogeneities due to
soils, vegetation cover, and
topography impact
coarse-scale surface fluxes
and states?

2. What is the relative impact
of various sources of
surface heterogeneities on
coase-scale surface fluxes
and states?
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Methodology

v

Sources of heterogeneities
1. Soils (POLARIS30)
2. PFT (MODIS)
3. Surface elevation (GTOP30)

ALM is modified to account for effects of topography (slope and
aspect) on downwelling solar radiation

Surface dataset created at 1km horizontal resolution

Each watershed was driven by 1 x 1 CRUC forcing dataset
Simulation length was 20-years

Surface dataset contained 100% naturally vegetated land

Watersheds
1. Rio Grand headwaters watershed, CO
2. Snake headwater watershed, Wyoming



Methodology (continued)

> Following set of ALM simulations were performed:

Code | Soil | PFT | Surface elevation
VUF | Variable | Uniform Flat

UVF | Uniform | Variable Flat

VVF | Variable | Uariable Flat

UUT | Uniform | Uniform Topography
VUT | Vniform | Uniform Topography
UVT | Uariable | Variable Topography
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Rio Grande Headwaters: Monthly sensible heat flux
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Rio Grande Headwaters: Monthly latent heat flux
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Conclusion

» Surface heterogeneities have negligible impact on domain
average fluxes and states.

» Surface heterogeneities lead to spatial variability in simulated
fluxes and states.



Conclusion

« Sub-gridscale Land heterogeneity will affect
climate response.

* Correlated land-use with snow affects the
mean response.
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