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Quantifying ocean mixing

Given that vertical and horizontal mixing processes can
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Summary:
Resolution of Ocean Component of Coupled IPCC models
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not be simulated directly in Earth System Models we

examine these processes in two novel ways:
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Fig 1. Predicted model resolution with

» Use Large Eddy Simulation (LES) for the smallest time. Horizontal lines signify scales of

processes (< 100m).

Important processes.

MPAS Analysis Online diagnostics

* Novel MPAS-O in-situ analysis [1, 5, 6] for

fine resolution.

* High data-need analysis is possible.
* Quantify impact of small scale eddies on the
large scale flow at exascale.

MPAS Analysis Members provide
unparalleled diagnostic opportunities.

Fig 3. MPAS-O faithfully
reproduces small scale
variability of relative
vorticity in the high
resolution region.
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Fig 4. MPAS analysis
member tools can be used to
nearly close zonal eddy-
mean flow momentum
balance. Can be used to

assess balance regionally [1].
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Fig 2. Lagrangian particle a) statistics for mid-latitude
basin [5] and b) pathlines for idealized Southern
Ocean [4] using Lagrangian In-situ Global High-
performance particle Tracking (LIGHT).
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Fig 5. K (eddy diffusivity) Fig 6. Eddy and mean K
requires high resolution to decomposition via HIGH-
compute large eddies and and LOW-pass temporal
correct mixing: Skm with filtering gives residual
small scales removed diffusivity (DIFFU) from
and unfiltered 4km similar FULL flow resulting from
relative to 32km case [5].  nonlinearity [4].

For additional information, contact:
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Fig 7. KPP Schematic. Fig 8. Free convection Fig 9. River outflow test Fig 10. River outflow test
KPP seeks to capture test results. Increased results KPP temperature results. KPP cannot mix
influence of small, three- bias relative to LES at rapidly diverges from salinity Transport by large
dimensional eddies on high resolution in KPP [3]. LES. Cooling is too eddies is not proportional
the climate [3]. uniform in vertical [3]. to surface flux [3].

Feedbacks of unresolved eddies on the simulated climate:
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Fig 11. Equatorial Pacific cross sections of zonal velocity. Left - no smoothing, Right - Smoothing. Smoothing of
mixing parameters has profound impact on ocean currents. Appropriate degree of smoothing is unknown and

likely regionally dependent.

Future directions
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Fig 12. LIGHT vyields 6 5 -4 3 2 -1 0
Lagrangian ocean flow within Fig 13. A new vertical mixing
ACME for fate and transport scheme produces a salinity flux
diagnostics. where KPP has none.
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Ultimately, fidelity of climate
simulation depends on ocean
mixing parameterizations.
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