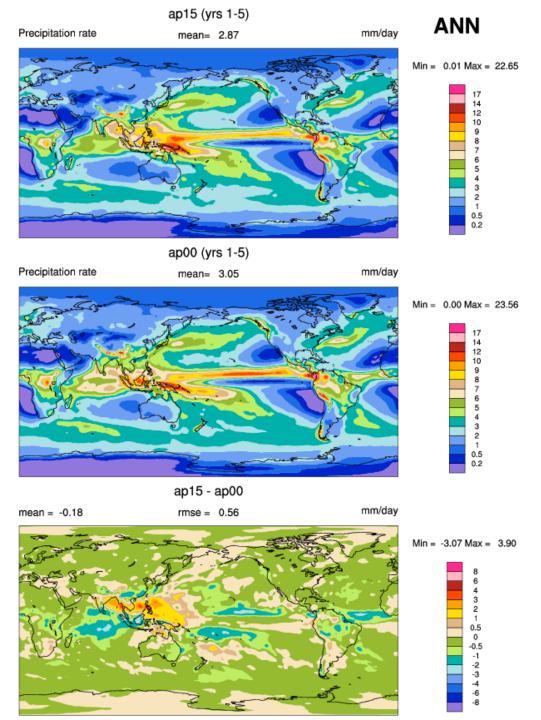
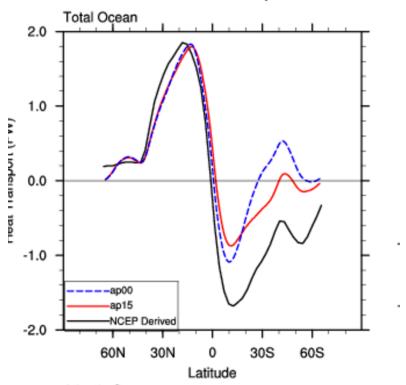
Atm Group Highlight


(Phil for the group)

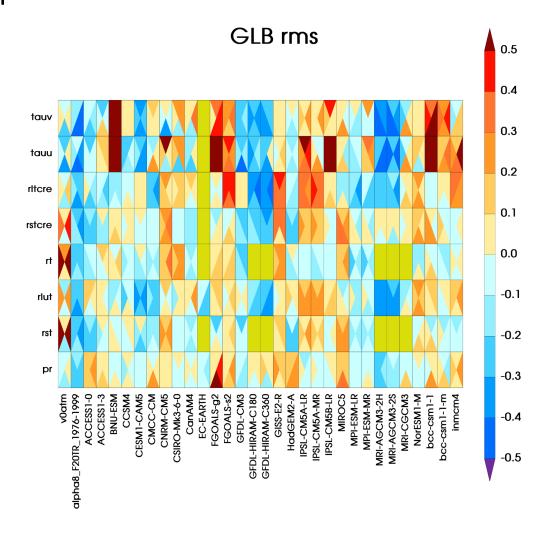
Progress on Model

- Atmosphere model configuration that we believe suitable for coupling provided mid July (AV1C-04)
- Worked with coupled team to evaluate it through various forcing datasets (PI, PD,...) for "effective forcing", and basic climate
- Noted biases
 - High-latitude DJF climate, model is too warm near the surface
 - Upper tropospheric warm bias in the high latitude,
 - Too little marine stratocumulus, and too much trade cumulus,
 - In the southern hemisphere, the implied ocean heat transport is pretty far off,
 - JJA tropical precipitation


Two tracks (same codebase) are active

- Discussed with EC and Coupled team in August
 - The submitted track being used for coupling (AV1C-04)
 - The exploratory track (ap15 and descendants)

Aug/Sept 2016: adding Gustiness Trying to address Precip and surface flux biases


Annual Implied Northward C

Tradeoffs:

- Degradation in Water Vapor
- 2. Degradation in Cloud Forcing

V0 vs V1AC-04

Learning experiences from coupled/atm team activities (Sept/Oct)

- Problems found with water conservation
 - Small errors in flux exchanges
 - "positivity fixers" exacerbate conservation errors with higher vertical resolution
 - Choice of atmospheric dynamics/physics time step coupling strategies lead to conservation errors exacerbated by higher vertical resolution
- Model stability
 - RRTMG errors (known in CESM, on our radar, but other issues had higher priority)
- Fixes were committed to master rapidly

About 10 days ago:

- Bug was found in cloud microphysics
 - A parameter change introduced to reduce the aerosol indirect effect that should have appeared in two places in the code was only implemented in one place
 - → correction caused significant change to climate
 - → a second change brought climate partway back to decent climate
- First discovery was in track with "gustiness on". Problem is present in standard and experimental track.
 - A fix is required very rapidly.
 - Exploring how the bug manifested itself revealed another problem in CLUBB/MG2 formulation.
 - → an important microphysical property is out of range of desired values

• Solution:

- Move back to "standard track"
- Fix the microphysics bug, retune so climate is again OK
- Figure out how to deal with the CLUBB/MG2 inconsistency
 - Live with it
 - Fix it

Other interesting stuff

- 11 Papers in prep or submitted
- 10 Posters in poster session
 - #A01 Aerosols in v1-beta
 - #A02 Climate sensitivity to marine organic aerosol emissions in ACME v0
 - #A03 Parametric sensitivity and optimization in ACME-V1 atmosphere
 - #A04 High-Resolution Tuning
 - #A05 Prototype Workflow for Tuning ACME with RRM
 - #A06 Identifying and fixing water conservation errors in the ACME atmosphere model
 - #A07 Cloud Evaluation using simulators
 - #A08 Convective Drizzle in ACME v1 Atmosphere
 - #A09 OrographicPrecip
 - #A10 Gustiness and monsoons in v1