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FAST VS ACCURATE: Physical parameterizations have to be
simple to be fast. But super-parameterization demonstrates
more accurate parameterizations can significantly improve
climate predictions [1]. With neural-network (NN) emulation
[2] it is possible to achieve super-parameterization quality
with no reduction in model throughput.

A NONLINEAR MAP: Physical parameterizations are nonlinear
maps from state variables to forcing terms (sources/sinks) in
a column. This is precisely the kind of things neural nets are
designed to do. By generating thousands of state/forcing
pairs, the neural net can be trained to accurately emulate the
super parameterization. At run time, the parameterization
costs no more than a single evaluation of the NN. Neural Net
emulation has been applied to the long-wave and short-wave
radiation parameterizations in CCSM by Krasnopolsky and
Rabinovitz, with good results.[3]

SCALE AWARE: By expanding the input vector to include
length and time scales, and expanding the training data to
cover the output of models at multiple scales, it may be
possible to construct a single NN emulation valid across
multiple scales.

CHALLENGES: Open questions remain in how to determine
the optimal network structure and training data set needed
to achieve adequate state-space coverage.
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A GRAPHICAL WORKFLOW: Interaction with ACME could be simplified by building a
common graphical interface for all stages of the climate model workflow including:
configuration, building, job submission, job monitoring, in-situ visualization, and
automated post processing / feature detection.

EASY SETUP: A dropdown menu would provide easy access to
frequently used simulation configurations and test suites. Initial
conditions, active components, and mesh characteristic would be
displayed on the globe.

START TO FINISH: Configure, build, and submission steps would
be push-button simple for the chosen climate experiment,
while the Ul provides active monitoring of job progress,
throughput, and displays in-situ history data on the globe as

it becomes available.

MESH CUSTOMIZATION: Variable resolution mesh
customization could be as simple as pinch and zoom to
add resolution to a region of interest.

AUTO DETECTION: Tools for post processing would be made =
available both during and after the simulation. Automated NN ; e 0

https://earth.nullschool.net

Select Test Setup

measurement of stats, anomalies, and application of feature

IN-PLACE ANALYSIS: A client/server setup would transmit only the data
needed to render the view on your laptop, leaving data files in place.

The emphasis for this tool is user convenience and ease of use.
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detection algorithms would flag significant data for further analysis. N ACME 1° Pre-Industrial Control

Case Name: b40.1850.trackl.1deqg.006
Machine: Edison

CMIPS ID: 3.1-X

Compset: B_1850_TRACK1_CN
Resolution: 0.9x1.25_gx1v6

Years: 1-1300

Time Frequencies Saved: Monthly
Initialization: year 863

HPSS Location: /CCSM/csm/b40.1850.track1.1deq.006
Start/End Dates: 9/3/09, 1/3/10
Data Release Date (Full): 5/1/11
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MESH DISTORTION: Terrain following grids cause mesh distortion in vertical coordinate surfaces above steep orography. [4] Imperfect
cancellation of geopotential-gradient and pressure-gradient forces produces numerical errors. This causes spontaneous generation of
velocity fields and prevents steady state solutions in mountainous regions [5]. The problem gets worse as simulation resolution increases

and resolved mountain slopes become steeper.

THE IB TECHNIQUE: Immersed boundaries (IB) offer a potential solution to this problem. The IB techniqgue is commonly used in aerospace
to represent complex geometries. Boundary conditions are enforced by setting field values beneath the surface. Field values at immersed
points (black) are obtained by reflecting about the immersed boundary (yellow) and interpolating field values at matching fluid points
(white). No mesh distortion is produced and the mesh need not be change as resolution is increased. IB techniques can even handle
topology that moves over time due to melting glaciers or shifting coastlines. This approach has been applied successfully in WRF [6].

CHALLENGES: Some physical parameterizations implicitly expect field values at terrain following coordinates, with the lowest point directly
at the boundary. Thus fields must to be projected onto the terrain following mesh, or those parameterizations need to be altered.
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BETTER PARAMETERIZATIONS: The automated discovery of
equations of motion from data is another possible route to
achieving improved physical parameterizations.
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SPARSE REGRESSION: Brunton et al [7] demonstrated a fast
technique for identifying analytic equations of motion from
iterative sparse regression of time-sampled data including the
chaotic Lorenz system. By applying this technique to data
generated by DNS, large eddy simulations, and convection-
permitting simulations, it should be possible to construct
accurate phenomenological approximations directly from
data.
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The Three-Scroll Unified Chaotic

SCALE AWARE: Sampling simulation data from simulations at e
multiple scales should enable extraction of scale aware =8
approximations as well. It would be interesting to compare
the trade-offs of this approach with the neural net emulation
technique outlined above.

CHALLENGES: This approach works best with a small set of
dynamic variables. This requires research into dimensional
reduction techniques for generating low order basis functions
from gridded data.
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