2017 All Hands ACME Meeting Potomac, MD June 5-7, 2017

Spatiotemporally dynamic drivers of global land use and land cover change (LULCC) in the past century

Atul Jain^{1*}, Xiaoming Xu¹, Katherine Calvin²

¹University of Illinois, Urbana, IL 61801 ²JGCRI, College Park, MD 20740

*Email: jain1@illinois.edu

Acknowledgements
DOE BER

Overall Objective of Our ACME Project

- Advance the treatment of land disturbance, particularly LULCCs and land management practices, within GCAM and couple it with ACME
- Use the coupled systems to fully explore the potential contribution of
 - LULCC and land management practices to future emissions and mitigation opportunities
 - terrestrial carbon sources and sinks, and climate change.

GCAM Makes <u>Future</u> Projections of LULCC at Regional Scale

283 agro-ecological zones (AEZs) within 32 geo-political regions

Linking GCAM and ESM - Current Approach

Focus of Today's Talk

Implementation of Global-Scale Spatial Dynamic Allocation Model (SDAM) of Forest (primary and secondary) and Agricultural Land use Changes in GCAM-ACME Coupled Modeling Framework.

Requires understanding of:

- dynamics of historical LULCC
 - available based of the historical reconstructions
- spatial and temporal heterogeneities of LULCC drivers over the historical time
 - limited information available at global and centenary scales

Changes in Agriculture Land from 1770-2010

Changes in Forest Land from 1770-2010

7000 6000-5000-4000-3000-1000-1000-0 2000 BC 0 2000 AD

LULCC downscaling model (SDAM)

(Meiyappan et al., 2014)

Estimation

Historical land use data (Ramankutty & Foley)

Historical climate data (CRU-TS) (also soil, terrain)

Historical population data (HYDE) (also urban areas, GDP, market access)

Evaluate Spatial & temporal land use downscaling model

SDAM parameters

Linking IAM and ESM - Modified Approach

SDAM - Downscaling

SDAM - Causes of LULCC

ISAM - HYDE LCLUC Data

Estimated Forest Area (1990s) - Comparison with Previous Studies (Unit million km²)

	Hurtt et al. (2006)	LUH2 (Hurtt et al. 2017)	ISAM-HYDE	Test Case		
Regions			(Consistent with IGBP Classification)	FAO ²	ISAM-HYDE (UMD Classification)	
North America	9.3	8.1	5.8-6.0	5.1	4.1-4.5	
Latin America	9.0	8.2	7.4-8.3	10.2	9.8-10.1	
Europe	1.6	1.3	1.3-1.4	1.7	1.5	
North Africa and Middle East	<0.1	<0.1	<0.1	0.1	0.4	
Tropical Africa	4.4	3.4	2.8-3.15	6.9	7.0-9.8	
Former USSR	9.7	8.8	5.9-6.0	8.1	6.3- 6.5	
China	2.5	2.1	1.2-1.35	1.7	1.8- 2.0	
South & South East Asia	3.3	3.2	3.1-3.2	3.6	3.3- 3.4	
Pacific Developed Region	1.1	1.0	1.1	2.2	2.4- 3.7	
World	40.9	36.2	29.0-30.1	39.6	37.2-41.3	

Driver Data - Biophysical and Socioeconomic Data sets

Category	Data Variable	Description/Units	Spatial Characteristics	Period of Availability	Source	
Terrain (1)	Elevation, Slope and Inclination Combined	Categorical Data classified into 9 gradient classes	5 minutes^ (lat/lon)		FAO/IIASA, 2010. Global Agro-ecological Zones (GAEZ v3.0). FAO, Rome,	
Soil characters (5)	Soil fertility Soil drainage Chemical composition Soil depth Soil texture	Categorical Data classified into 7 gradient classes of land suitability for agriculture		Constant with time	Italy and IIASA, Laxenburg, Austria. http://www.fao.org/nr/ gaez/en/	
Temperature (6)	Temperature (T _a)		0.5 degrees	1901-2009	Climatic Research Unit (CRU) TS 3.1 (updated estimates based on	
	Daily Average Maximum Temperature (T _{max})	°C	(lat/lon)	(monthly)		
Seasonal PET (4)	Potential Evapotranspiration	Millimeters			Mitchell and Jones, 2005)	
Precipitation (7)	Precipitation				CRU TS 3.10.01#	
Seasonal PDSI (4)	Palmer Drought Severity Index (PDSI)	No units	2.5 degrees [@]	1870-2010	Dai et al. (2011a,b)	
Seasonal THI (4)	Temperature humidity index (THI)	°C				
Socioeconomic Factors (7)	Urban/built-up land	% of grid-cell area	5 minutes [^]	10,000 BC – 2005 AD	Goldewijk et al. (2010)	
	Urban Population Rural Population	Inhabitants/km²	(lat/lon)	(decadal) [%]		
		Country 1000		1 AD-2010	Bolt and Van Zanden (2013)	
	Gross Domestic Product (GDP) per capita	Constant 1990 international (Geary- Khamis) dollars/person	National level	(annually between 1800- 2010) ^{\$}	(The Maddison Project - http://www.ggdc.net/m addison/maddison- project/home.htm)	
	Market Accessibility	No units	1 km [^] (lat/lon)	~2005	Verburg et al. (2013)	

LULCC Activities Studied

- Following activities
 - Primary forest to cropland
 - Primary forest to secondary forest
 - Primary forest to pasture land
 - Primary forest to urban area
- Over the time period 1900-2005

SDAM downscaling results - Cropland

SDAM downscaling results: Pastureland

Base map (1900)

Results: Primary forest to cropland

Overall dominant driver Dominant driver by AEZ Dominant driver in each grid 1900~1919 Change in rural 🥒 🌶 population density 1940~1959 €hange in rural population density 1980~2005 Change in urban 🌛 Precipitation Temperature population density Market influence index: Values refer to how many standard downscaled GDP per capita deviations the LULCC areas will change, by market accessibility

per standard deviation increase in the

drivers

Results: Primary forest to secondary forest

Take Home Message

- Spatial land use modeling and other tools necessary to bridge scales between human and ESMs
- Both biophysical and socioeconomic drivers will strongly modulate climate change implications for agriculture, forest and other land use
- Understanding the drivers and dynamics of LULCC over the historical time can help to improve IAM-based projections of LULCC on a longer time scales

Near Term Research Plan

- Analyze the drivers of more LCLUC types
- Synthesize case studies at different scales to evaluate the LCLUC drivers
- Implement SDAM into GCAM

The End

SDAM

- Two objectives
 - downscale agricultural, forest and other land use and changes from large world regions to the grid cell level
 - determine the causes of these changes
- The SDAM estimated land use changes within each grid cell are driven by nonlinear interactions between
 - socioeconomic conditions (e.g. population, technology, and economy),
 - biophysical characteristics of the land (e.g. soil, topography, and climate), and
 - land use history

Geographically Weighted Regression (GWR)

 GWR constructs a distinct relationship between each LULCC grid cell and driving variables by incorporating grid cells falling within a certain bandwidth of the target pixel

LULCC Activities Studied

- Following activities
 - Primary forest to cropland
 - Primary forest to secondary forest
 - Primary forest to pasture land
 - Primary forest to urban area
- Over the time period 1900-2005