

Vision for a Machine Learning Frame Enabling EttelEnd Earth System Predictability Research

Nicki L. Hickmon, Scott M. Collis, Forrest M. Hoffman, and Haruko Wainwright

¹Argonne National Laboratory

²Oak Ridge National Laboratory

³Lawrence Berkeley National Laboratory

DOE Regional and Global Model Analysis (RGMA)
Principal Investigator (PI) Virtual Meeting

October 13–16, 2020

Developing Vision Enabling AI from Obs to Earth Syst

- Define the paradigm shift required to employ artificial intelligence and machine learning across field, lab, modeling, and analysis activities
- Multi -lab team working with the EESSD community
- Vision targets 5 –10 year timeframe
- Non-incremental advancement built with the future of EESSD programs in mind
- Workshop & meeting reports over next 9 —18 months

Team Members
Nicki Hickmon

Forrest Hoffman Haruko Wainwright Scott Collis

DOE BER EESSD Director
Gary Geernaert
DOE Program Managers
Jay Hnilo & Renu Joseph

Get Involved:

- RGMA AI/ML Collection
- Sign Up

Overarching Goal

- A framework to combine DOE's experiment/observation and simulation capabilities to quantify and reduce the uncertainty in high-resolution Earth systems models
- Bridge the gap between the state of the art in Al/ML research and the needs of EESSD programs
- Harness Earth Systems data including inter -agency resources
 (DOE, NOAA, NASA) and seamlessly link data holdings
- Harness upcoming DOE computing including Exascale, mixed architecture and edge

DOE's Modeata Experiment Enterprise

Novel AI/ML Framework for Atmosphere Interactions

- Domain -specific machine learning applications from field and lab activities to models and analysis
- AI/ML at every aspect in the wheel (examples; not exhaustive)
 - Simulation -guided experiment/sampling design
 - Dynamic/responsive AI -controlled measurement systems
 - Edge computing and 5G sensor networks
 - Pattern recognition and process discovery through large data
 - Hybrid process -/machine learning -based coupled Earth system modeling
 - Data-driven multiscale modeling and data —model integration and analytics

Summary

- Developing vision for new paradigm for Earth System predictability focused on enabling artificial intelligence and machine learning across field, lab, modeling, and analysis activities.
- Workshops coming soon (9 –18 months)
 - Whitepapers & surveys
- How to engage:
 - Participate in breakout survey at this meeting
 - Sign up for more information and tell us about what you're working on: http://bit.ly/MLAI4earth

