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Abstract This chapter examines some selected methods of projecting changes in 5

extreme weather and climate statistics. Indices of extreme temperature and precipi- 6

tation provide measures of moderately rare weather events that are straightforward 7

to calculate. Drought indices provide measures of both agricultural and hydrological 8

drought that are especially suitable for constructing multi-model ensemble projec- 9

tions of future change. Extreme value statistical theories are surveyed and provide 10

methodologies for projecting the changes in frequency and severity of very rare 11

temperature and precipitation events. 12

Future changes in the average climate virtually guarantee that changes in extreme 13

weather events will follow. Such rare events are best described statistically as 14

it is difficult, but perhaps not impossible, to directly link individual disasters to 15

human-induced climate change. Examples of extreme weather events with severe 16

consequences to society that are amenable to projection include heat waves, cold 17

spells, floods, droughts and tropical cyclones. Confidence in projections of future 18

changes in the severity and frequency of such events is increased if the mechanisms 19

of change can be identified and understood. Equally important, however, is the 20

rigorous quantification of the uncertainties in these projections. These uncertainties 21

include the inherent natural variability of the climate system as well as limitations 22

in both the climate models’ fidelity and the statistical methods used to analyze their 23

output. 24

The discussions about future changes in extreme events in recent climate change 25

assessment reports (including the IPCC 4th Assessment Report and the US national 26

assessments) did not generally focus on sophisticated statistical analyses. Rather, 27
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extremes were presented in these documents by a series of “extreme indices”. 28

Introduced first by Frich et al. (2002), they are often referred to as the Frich indices. 29

While many of these represent significant departures from the mean climate, they 30

are by no means descriptive of rare events or the far tails of the temperature or 31

precipitation distributions. The fundamental difference between these index based 32

treatments and formal Extreme Value Theory descriptions of rare events illustrates 33

the difficulties in nomenclature when discussing climate and weather extremes. 34

What constitutes “extreme” varies greatly in the literature and depends highly on 35

the application of the final results. This chapter will survey some of these methods 36

of projecting changes in climate and weather. 37

8.1 Extreme Indices 38

A set of extreme indices was part of the data output specifications for the Coupled 39

Model Intercomparison Project (CMIP3, see www-pcmdi.llnl.gov). Table 8.1 listsAQ1 40

these ten pre-calculated statistics that were specified to be calculated for each 41

year of the simulations. Code was provided to the climate modeling groups to 42

calculate these fields although they could also be replicated from the archived daily 43

averaged surface air temperature and precipitation rates. Most of these indices are 44

clearly motivated by their relevance to climate change impacts, e.g. the number 45

of frost days, the growing season length and the number of consecutive dry days. 46

Table 8.1 The Frich indices saved as annualized quantities for the CMIP3 coordinated numerical
experiment

Index name Units Description

t1.1fd Day Total number of frost days (days with absolute minimum
temperature < 0ı C)

t1.2etr Kelvin Intra-annual extreme temperature range: difference between the
highest temperature of any given calendar year (Th) and the
lowest temperature of the same calendar year (Ti)

t1.3gsl Day Growing season length: period between when Tday > 5ı C
for > 5 days and Tday < 5ı C for > 5 days

t1.4hwdi Day Heat wave duration index: maximum period > 5 consecutive days
with Tmax > 5ı C above the 1961–1990 daily Tmax normal

t1.5tn90 % Fraction (expressed as a percentage) of time Tmin > 90th percentile
of daily minimum temperature, where percentiles are for the
1961–1990 base period

t1.6r10 Day No. of days with precipitation greater than or equal to 10 mm
day�1

t1.7cdd Day Maximum number of consecutive dry days (Rday < 1 mm)
t1.8r5d kg m�2 Maximum 5 days precipitation total
t1.9sdii kg m�2 s�1 Simple daily intensity index: annual total/number of Rday greater

than or equal to 1 mm day�1

t1.10r95t % Fraction (expressed as a percentage) of annual total precipitation
due to events exceeding the 1961–1990 95th percentile

www-pcmdi.llnl.gov
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However, for a more general interpretation of the effect of global climate change on 47

extreme events, these three indices and the others based on fixed threshold values 48

are somewhat less useful (Alexander et al. 2006; Tebaldi et al. 2006). For instance, 49

every day is a frost day in the very high latitudes but none are in the deep tropics. 50

Similarly, 10 mm of precipitation in a single event is fairly common in tropical 51

regions but impossible in many desert regions. Of more utility in this context are the 52

percentile-based indices such as tn90 (hot nights) and r95t (very wet days). These 53

two indices define base states (the 1961–1990 period) from which departures can 54

be calculated from anywhere on the planet. The bottom panel of Fig. 8.1 shows a 55

CMIP3 multi-model projection of the change in r95t over land regions at the end of 56

the twenty-first century under the SRES A1B forcing scenario. This index is defined 57

as the percentage of annual total precipitation due to events exceeding the 1961– 58

1990 95th percentile. During the base state period, this field would be uniformly 5%. 59

End of twenty-first century values over land in this figure range from a low of 9% to 60

a high of 54%. This increase in the index may be interpreted in the following sense: 61

what might be currently considered very wet days (i.e. the top 5%) will occur from 62

two to ten times more frequently in this future scenario. This also suggests that the 63

shape of the distribution of daily precipitation must change in this scenario because 64

the mean precipitation is not projected to change in a similar manner. Note that care 65

should be exercised in interpreting such exceedance rate changes as sampling errors 66

may play a role (Zhang et al. 2005). 67

In general, mean precipitation changes are a mix of increases and decreases 68

and are smaller in magnitude as in the top panel of Fig. 8.1. In this multi-model 69

example, an average projection is formed by equally weighting each climate model. 70

Constructing weighted average projections based on model skill in replicating 71

observed climate means or trends is a difficult task (Santer et al. 2009; Knutti 72

et al. 2010a) and is presumably yet more difficult for extremes due to their less 73

well characterized behavior. In Fig. 8.1, models with multiple realizations, if any, 74

are ensemble averaged prior to inclusion into the multi-model result. Furthermore, 75

the index is calculated on the models’ native grids, then regridded to a common 76

grid and masked prior to the multi-model averaging. These latter two points are 77

the general practice in many climate change projection studies but have important 78

implications for certain extremes, especially those related to precipitation, when 79

evaluating model performance (Wehner et al. 2010).AQ3 80

Figure 8.2 shows a different way of representing the change in an extreme index. 81

In this figure, a CMIP3 multi-model projection of the change in tn90 averaged over 82

North American land regions under a variety of forcing scenarios is shown from 83

the beginning of the twentieth century to the end of the twenty-first century. This 84

index is defined as the percentage of time that daily minimum temperature exceeds 85

the 90th percentile, of the 1961–1990 base period. This method of illustrating 86

a projection, while lacking the spatial detail of the previous figure, allows the 87

explicit depiction of projection uncertainty. The four major sources of projection 88

uncertainty are the natural variability of the climate system, limited sample size 89

(i.e. small ensembles and/or short time intervals), imperfect climate models (largely 90

manifested by differences in climate model sensitivity to changes in greenhouse gas 91

mwehner
Cross-Out
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Fig. 8.1 A CMIP3 multi-model projection of changes in precipitation statistics at the end of the
twenty-first century under the SRES A1B forcing scenario. (Top panel) Percent change of annual
mean precipitation. (Bottom panel) Percentage of annual total precipitation due to events exceeding
the 1961–1990 95th percentile (r95t). Ten different climate models were averaged with equal
weighting in these projections (units: percent)

AQ2
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Fig. 8.2 A CMIP3 multi-model projection of the percentage of time the daily minimum temper-
ature exceeds the 90th percentile of daily minimum temperature, calculated from 1961 to 1990
base period (tn90) at the end of the twenty-first century under the SRES A1B forcing scenario.
Ten different climate models were averaged with equal weighting in this projection. A 13 point
temporal filter is applied to all projections as in IPCC AR4 (units: percent)

concentration but also realized in less well characterized ways for extremes), and 92

the unpredictability of human behavior (i.e. the different scenarios). One method for 93

quantifying the uncertainty from the imperfections of climate model is to calculate 94

the variance in the projection across the ten climate models that provided this 95

index to the CMIP3 database. In Fig. 8.2, one standard deviation across models is 96

depicted by the gray shading and two standard deviations by the yellow shading. 97

The envelopes plotted here are determined by the maximum spread across all 98

three scenarios. One might also want to consider each scenario separately to base 99

decisions on how significant the differences between the scenarios are. In this case, 100

taken from the USGRCP report (Karl et al. 2009), this representation permitted 101

usage of the “likelihood language” (Morgan et al. 2009). The gray shaded area 102

represent the “likely” range of change (i.e. a 2 out of 3 chance of being a correct 103

statement) while the yellow shaded bounds represent the “very likely” range of 104

change (i.e. a 9 out of 10 chance of being a correct statement). However, given 105

the limited set of available global models and that many of them are related, this 106

measure of uncertainty does not completely sample the space of projection and 107

underestimates to true uncertainty due to model deficiencies (Tebaldi and Knutti 108

2007; Knutti et al. 2010b). 109
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As with projections of changes in mean quantities, the scenario uncertainty in 110

the beginning of the twenty-first century is less than at the end (Hawkins and Sutton 111

2009; Yip et al. 2011). Comparison of Fig. 8.2 to similar figures for changes in 112

mean temperature (Karl et al. 2009) reveals subtle differences in the timing of the 113

separation of the low emissions scenario (B1, stabilizes at 550 ppm CO2) from 114

the high emissions scenarios (A2, business as usual). Furthermore, the relationship 115

between the higher stabilization scenario (A1B, stabilizes at 720 ppm CO2) from 116

the business as usual scenario is quite different. In multi-model projections of the 117

annual mean surface air temperature, the two scenarios are indistinguishable over 118

most areas, including North America, until mid-century after which the business as 119

usual scenario continues to increase and the stabilization scenario starts to stabilize. 120

By the end of the twenty-first century, the differences between the scenarios are 121

“likely” to be significant. In Fig. 8.2, warm nights increase in temperature over 122

North America at the beginning of the twenty-first century at a greater rate in the 123

stabilization scenario (A1B) than in the business as usual scenario (A2). This is 124

followed by the A2 scenario catching up towards the end of the twenty-first century. 125

There are enough differences in these forcing scenarios that one could hypothesize 126

a plausible mechanism for why warm night temperatures might behave differently 127

from annual mean temperatures. But the inter-model uncertainty in Fig. 8.2 is clearly 128

large enough to prevent a conclusion that these differences are “likely” significant. 129

Even a weaker statement about the significance of these differences is prevented 130

by limitations in the sample size behind this index projection in comparison to that 131

behind projection of mean temperature changes. For at the beginning of the twenty- 132

first century, only about 10% of the daily temperature values are used in calculating 133

the index as opposed to all of the values when calculating the annual mean. Although 134

this fraction rises to about 50% towards the end of the century due to warming, the 135

tn90 index remains a noisy quantity compared to annual mean temperatures. In order 136

to ascertain, whether these tantalizing differences in the scenario behavior between 137

the warm night index and the mean temperature are genuine, more realizations 138

of each individual model are required. This will prove to be a recurring theme in 139

ascertaining the significance of extreme changes. The exact details depend greatly 140

on the variability of the quantity of interest and the magnitude of the differences 141

(Wehner 2000). 142

Other extreme indices than that developed by Frich et al. (2002) can be useful 143

tools in analyzing future climate change projections. In particular, there are a 144

number of drought indices in wide use by the agricultural and other water intensive 145

industries. Table 8.2 shows five drought indices that are provided to the public at 146

regular intervals by the US National Climatic Data Center (NCDC) on their website, 147

http://www.drought.noaa.gov/. A recent paper (Wehner et al. 2011) examined the 148

performance and projections for the Palmer Drought Severity Index in the CMIP3 149

models finding wide variations between the models. In that study, the models 150

simulated the observed PDSI much better after a bias correction procedure. Bias 151

corrections can take many forms and can be useful in enhancing confidence in 152

projections. Bias correction assumes that errors in the mean state may not influence 153

trends or changes to the same degree. In many instances, this assumption can be 154

http://www.drought.noaa.gov/
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Table 8.2 The NCDC drought indices (see http://www.drought.noaa.gov/)

Drought
index name Units Description

t2.1PDSI Palmer Drought
Severity Index

Duration and intensity of long-term drought

t2.2PHDI Palmer Hydrological
Drought Index

Similar to PDSI except measures longer term
hydrological effects relevant to reservoir levels,
groundwater levels, etc.

t2.3Z-index Palmer Z Index Short-term drought on a monthly scale
t2.4CMI Crop Moisture Index Short-term drought on a weekly scale
t2.5SPI Standardized

Precipitation
Index

A normalized precipitation only index that is reported
on time scales ranging from weeks to years.

tested by applying the correction over one part of an observational record and testing 155

against another part. In the PDSI study, the input (monthly averaged temperature and 156

precipitation) to the drought index calculation was corrected by applying a monthly 157

varying climatological factor that altered the models’ long term temperature and 158

precipitation means to the observations but kept each models’ particular variability 159

intact. The PDSI is constructed to measure excursions from a neutral base state. 160

Since the models’ variability was not corrected, performance in replicating observed 161

PDSI statistics ranged greatly. The simple land surface model contained in the 162

PDSI algorithm is particularly sensitive to temperature leading to large projected 163

changes in the severity and spatial extent of future drought in North America. 164

However, this large temperature sensitivity caused large inter-model differences in 165

these projections at the end of the century because of the large differences in climate 166

model sensitivities to changes in atmospheric greenhouse gases. 167

This source of projection uncertainty can be reduced in a certain sense by 168

rephrasing how the climate change question is asked. Most climate change pro- 169

jection questions ask something like: “What will happen at the end of the century?” 170

Instead consider if a question such as the following is asked: “What will happen 171

if the global mean temperature rises by 2.5 K?” In the former case, the time 172

period is fixed but the different models exhibit vastly different warmings. In 173

the latter case, the question of timing is foregone but at least the model states 174

bear some resemblance to each other. In fact, under the SRES A1B scenario, 175

the date at which the running decadal average global mean surface air temper- 176

ature reaches 2.5 K over its preindustrial value ranges from 2038 in the most 177

sensitive model to 2110 in the least sensitive model. The average date over all 178

models to reach this amount of warming is 2070. Figure 8.3 shows maps of 179

future North American PDSI under SRES A1B forcing and the associated inter- 180

model uncertainty relevant to these two ways of posing future climate change 181

questions. The upper two panels (a and c) show decadal averaged PDSI values and 182

represent what the climatological values of PDSI would be relative to the current 183

climatology. For interpretation of PDSI, drought is classified into the following 184

categories: incipient (�0.5 � PDSI > �1.0), mild (�1.0 � PDSI > �2.0), moderate 185

http://www.drought.noaa.gov/
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Fig. 8.3 (a) Multi-model average value of PDSI when the global average surface air temperature
has increased 2.5 K over its 1900–1909 mean value (b) inter-model standard deviation of the values
shown in panel (a, c) multi-model average value of PDSI for the decade centered at 2070 (d) inter-
model standard deviation of the values shown in panel (c)

(�2.0 � PDSI > �3.0), severe (�3.0 � PDSI > �4.0), and extreme (�4.0 � PDSI). 186

The upper right panel shows the PDSI averaged over all models for the decade 187

centered around 2070 (with an average model global warming of 2.5 K). In this 188

projection, conditions currently considered severe drought would become normal in 189

the western US. In parts of Mexico, conditions currently considered extreme drought 190

would become normal. However, uncertainty in this projection, shown as the inter- 191

model standard deviation in the lower right panel (d), is large in these regions. By 192

changing the climate change question to ask what the value of PDSI would be under 193

a 2.5 K global warming (which would occur on average at 2070), this inter-model 194

uncertainty is reduced in most areas as shown in the lower left panel (b). The actual 195

projection of drought severity is also reduced as seen in the upper left panel (a), 196

reflecting a nonlinear dependence of PDSI on temperature. 197
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8.2 Extreme Value Theory Methods 198

Numerous studies in the literature as well as much of the contents of this book utilize 199

sophisticated extreme value statistics to explore questions of climate change. These 200

techniques differ from the index-based methods described in the previous section 201

principally in their ability to quantify the statistical behavior of much rarer events. 202

Rather than review the details of how and when extreme value theory methods 203

may be applied to climate and weather datasets, this section discusses aspects of 204

interpretation of results from these statistical formalisms in a context of climate 205

change. 206

The parameters describing the generalized extreme value distribution and the 207

generalized Pareto distribution can often offer interesting insight. However, these 208

fields are not closely tied to observable quantities and are generally of limited 209

utility to the users of climate change projections. Design engineers and other parties 210

interested in climate change impacts are more concerned with how the limitations 211

of their particular systems might be exceeded. Return value and/or return time 212

often can provide the critical information necessary to make informed decisions 213

about the impacts of rare weather and climate events. Whether the analysis takes 214

a block maxima or threshold approach, these application relevant fields are readily 215

calculated if the distribution parameters can be satisfactorily fit to the extreme data. 216

Extreme value theory (EVT) is often used to describe how extreme weather 217

behaves in a changing climate by analyzing high frequency (i.e. daily) modeled or 218

observed datasets. Return values from the fitted EVT distributions are defined over 219

a fixed specified period, for instance, T with units in years. In a stationary climate, 220

the return value can be interpreted as the value of the data that would be realized on 221

average once every T years over a very long period of time. By introducing time as 222

a covariate, EVT can be generalized to non-stationary datasets (Brown et al. 2008; 223

Smith, Private communication, 2010). In a changing climate, this explanation loses 224

meaning for a time dependent return value. Instead, a more appropriate alternative 225

interpretation is that the return value at a given time represents the value that has a 226

1/T chance of occurring that year in the dataset. 227

Return time offers a slightly different way to express the same concepts. In a 228

stationary climate, the return time is the average time between instances that the 229

data take to reach or exceed a specified value over the course of a very long time. 230

In a non-stationary climate, the return time for a fixed specified value would be a 231

time dependent quantity. The inverse of the return time would be the chance that the 232

specified value would be achieved in that year. 233

Uncertainty in return value and return time estimates depends on the magnitude 234

of the time scale of interest in relation to the length of the datasets. When this time 235

scale is much less than the dataset length, the return values have likely been realized 236

in the datasets and uncertainty is lower. When the time scales are much larger than 237

the dataset lengths, the EVT estimates are extrapolations outside the datasets and 238

uncertainty is higher. However, if the asymptotic assumptions of the EVT are valid, 239

estimated return values and return times can be reasonable in extrapolated cases. The 240

generalization of EVT to treat time dependent datasets can help reduce uncertainty 241

mwehner
Sticky Note
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by allowing the consideration of longer datasets. However, care must be exercised 242

as these generalizations assume specific time dependences of the EVT distribution 243

parameters. These can be linear, quadratic or even higher order in the Smith (Private 244

communication, 2010) formalism but it is not always clear how to generate the best 245

fits. In fact, the observed climate change has not been particularly linear and future 246

changes may not even be monotonic if drastic remediation procedures are taken. 247

The actual climate system is of course limited to the single world that actually 248

exists. Climate model simulations have no such limitations as they are routinely inte- 249

grated in statistically independent realizations to be combined into large ensembles 250

by varying initial conditions. If one assumes quasi-stationarity over short periods of 251

time, these independent realizations can be combined into much longer datasets and 252

stationary EVT used to provide accurate estimates of the distribution parameters. 253

The length of such a period depends greatly on the variable of interest as well as the 254

rate of climate change. 255

Stationarity would be guaranteed if linear detrending is applied over these short 256

periods. In the literature (for instance Kharin et al. 2007), it is not uncommon 257

to assume a decade or two. Although Santer et al. (2011) showed that anyAQ4 258

individual decade in the last century might exhibit observed positive or negative 259

temperature trends, they also showed that over a large sample of decades, a 260

statistically significant positive trend can be found. This suggests that detrending is 261

prudent when combining intervals over individual realizations to construct a larger 262

stationary dataset for EVT analysis. Ensemble sizes in the CMIP3 database ranged 263

between three and eight, if multiple realizations were performed at all. In the CMIP5 264

specifications, a minimum of ten realizations is called for in the “Tier 1” experiments 265

(Taylor et al. 2009). This then affords the opportunity to concatenate detrended 266

decadal segments to build quasi-stationary datasets of about 100 years in length 267

representing any time period during the integration. 268

Hence, there are two EVT methods that can be used to make projections of 269

future changes in extreme weather event statistics. The first method is to fit non- 270

stationary datasets with time dependent EVT distributions. The advantage in this 271

approach is that the single realization of the observed climate system can be treated 272

without any ad hoc assumptions of stationarity. The length of the record should be 273

chosen carefully such that the trend is well fit by the specified time dependence. 274

For multiple realizations of a single climate model, each realization should be 275

treated separately in this method and ensemble mean return values and/or return 276

times calculated. A continuous picture of change including trends is provided 277

by this method. Additionally, a measure of the models’ internal variability can 278

be obtained by calculating the inter-realization variance to provide insight into 279

this source of projection uncertainty. The second method is applicable to climate 280

models with multiple realizations. In this approach, short intervals from each 281

realization are concatenated to form a larger dataset. Detrending of the segments 282

prior to concatenation is often desirable. Fitting a stationary EVT distribution to 283

concatenated datasets formed at different times permits changes in return values 284

and/or return times to be directly calculated. In both methods, the uncertainty from 285

estimation of the fitted distribution parameters can be estimated by the scheme 286
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outlined by Hosking and Wallis (1997). This technique involves first estimating 287

the distribution parameters for the actual dataset then generating random datasets 288

distributed by the EVT distribution defined by those parameters. To estimate 289

uncertainty, each of the random distributions is fit to an EVT with appropriate 290

parameters and return fields estimated along with their variances. This forms a 291

measure of uncertainty associated with the finiteness of the data. For the large 292

ensembles promised with CMIP5, this uncertainty should be reduced. 293

Presentation of the results from an EVT analysis of climate change poses serious 294

challenges as the concept of return value and return time may not be intuitive to the 295

non-specialist. Changes in return value (for a fixed return period) can be expressed 296

in similar forms to widely published changes in mean values. For instance, Fig. 8.4 297

shows a multi-model CMIP3 projection of the end of century changes under a 298

business as usual scenario (SRES A1B) of the 20 year return value of the annual 299

maximum daily average surface air temperature (upper panel) and the annual 300

mean surface air temperature (lower panel). Exhibiting projected changes in pairs 301

of figures such as these allows discussion of the differences between them. In 302

this case, large changes in the 20-year return value are confined to land masses 303

and are generally larger than changes in the annual mean. Not shown in these 304

figures are the seasonal behaviors of projected changes that can reveal mechanistic 305

insights. This seasonal aspect is particularly important in the interpretation of 306

changes in precipitation extremes. Also not shown are changes in extremes of 307

minima temperatures that exhibit different behaviors than the changes in maxima 308

temperatures, again providing opportunities for understanding physical mechanisms 309

of change. 310

Changes in severity of rare weather events is only a part of an EVT analysis. 311

Changes in frequency may be yet more important. Figure 8.5 attempts to illustrate 312

this point in the upper panel by showing the return time in the future for daily surface 313

air temperatures exceeding the present day 20-year return value. In this case, the 314

future return time is projected to become less than 20 years over most of the globe. 315

Alternatively, the lower panel of Fig. 8.5 shows the number of times in a future 316

20 year period that this same temperature threshold can be expected to be exceeded 317

on average. If the climate does not change, this number would be one. However, for 318

annual maximum daily temperatures, the value is much greater than that over most 319

of the globe. The EVT data used in both Figs. 8.4, 8.5 come from the same analysis. 320

These figures reveal that warm weather events currently considered rare (once every 321

20 years) are projected to become relatively commonplace and that warm events of 322

a fixed rarity are projected to become more severe. 323

8.3 Multi-Variate Climate and Weather Extremes 324

The literature of multi-variate extreme value statistics is well developed (see 325

Chap. 7). However, it has not seen significant application to climate change 326

projections or historical analyses despite an urgent need. For instance, consider 327

http://dx.doi.org/10.1007/978-94-007-4479-0_7
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Fig. 8.4 Changes in the end of twenty-first century surface air temperature properties relative to
the end of the twentieth century under SRES A1B forcing from the CMIP3 models. Upper panel:
Change in 20-year return value of the annual maximum daily averaged temperature. Lower panel:
Change in annual mean temperature (units: kelvin)

hot, dry and windy events versus hot, moist and stagnant events. The impacts of 328

such events are very different. The former may lead to increased risk of fires while 329

the latter may lead to increased human mortality through heatstroke or air quality 330

issues. In both cases, at least one of the salient variables is not extreme in itself. In 331

fact, it is often the combination of multiple events, each common in isolation, that 332

is considered rare and/or dangerous. 333
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Fig. 8.5 Upper panel (a) The projected return time at the end of the twenty-first century under
SRES A1B forcing associated with daily temperature threshold defined by the end of the twentieth
century 20-year return value of the annual maximum daily averaged surface air temperature (units:
years). Lower panel (b) The number of occurrences per 20 year period at the end of the twenty-first
century when the daily averaged surface air temperature exceeds that same threshold. If the climate
had not changed, this number would be one (units: dimensionless)

Two multivariate indices are in common usage in weather forecasting. Similar to 334

the drought indices discussed above, they can be used to define the frequency and 335

severity of extreme events in climate change projections. The first of these is the 336

“Heat Index” (HI) that combines air temperature and relative humidity (Steadman 337
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1979a, b). The second of these is the “Wind Chill” index combining temperature 338

and wind speed (Osczevski and Bluestein 2005). Both of these indices, expressed 339

in degrees, are used to estimate effects on the human body and are often said 340

to describe how hot or cold “it feels”. The derivations of both indices are rather 341

involved and often implemented via tabular lookups or fitted polynomials. Delworth 342

et al. (1999) projected that patterns of future increases in HI are largely dependent 343

on temperature increases but are amplified by changes in moisture, illustrating a 344

complex interplay between variables. 345

8.4 Summary 346

Changes in climate and weather extremes can be projected by a wide variety 347

of methods. Indices and thresholds defined by their relevance to climate change 348

impacts can be particularly useful. Changes in truly rare events, often associated 349

with dire consequences, are well described by return value or return time changes 350

using extreme value theories. Projecting changes in multi-variate climate and 351

weather extremes is still a developing skill. The description of changes in rare 352

compound events via multi-variate extreme value theory would be an important 353

advance in the field. 354
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