Seasonal and inter-annual variability in wetland methane emissions simulated by CLM4Me’ and CAM-Chem and comparisons to observations

Lei Meng?!, Peter G. M. Hess?, Natalie M. Mahowald?3

1.Department of Geography and Environmental Studies Program, Western Michigan University, Kalamazoo, M| 49008
2. Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850

3. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850

Abstract:

Understanding the temporal and spatial variation of wetland methane emissions is
essential to the estimation of the global methane budget. We examined and
evaluated the seasonal and inter-annual variability in wetland methane emissions
simulated in CLM4Me’, a process-based methane biogeochemical model. We also
conducted simulations of the CAM-Chem model using CLM4Me' methane emissions
along with other methane sources and compared CAM-Chem simulated atmospheric
methane concentration with observations. The simulated and observed
concentrations were used to improve the magnitude of methane simulated from
wetlands in our model. Our analysis suggested that wetland methane emissions
peaked in 1994 and decreased since then in the period of 1990-2005. The largest
decrease in wetland emissions occurred in the tropics due to the decrease in
inundated area, as observed in satellite retrievals. In CLM4Me’, the largest seasonal
variation was present between 30N and 50N in mid-latitude. The seasonal variation in
high latitudes was small in magnitude due to the overall low emissions. CAM-Chem
model simulations suggested that both prescribed anthropogenic and predicted
wetlands methane emissions contributed substantially to seasonal and inter-annual
variability in atmospheric methane concentration. Rice paddies had an important
contribution in seasonal variability of atmospheric methane concentration in parts of
Asia and North America. This study confirms the significance of tropical wetlands in
constraining global wetland methane fluxes and suggests that changes in the growth
rate of methane may be strongly driven by changes in tropical methane fluxes.
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Monthly Emission Anomalies (Tg CH,/yr)

In the CLM-Me’ simulations used here, there is a strong decrease in tropical methane emissions, more so than
seen in most other simulations. This is largely driven by the inundation dataset (e.g. also seen in Ringeval et
al), but also driven by the model’s predictions of decreased hetereotrophic respiration after 2000. Our model
results also have a stronger decrease across 2000 than the models than were included in the WETCHIMP
methane flux intercomparison.
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Inter-annual variability in wetland CH, emissions used in this study and in others. A centered 12-
month running mean filter has been applied to smooth monthly output. Data for “LPJ variable
source area”, “LPJ”, and “update of Bousquet et al. 2006 (constant OH)” were obtained from
Spahni et al. 2011. “LPJ variable source area” indicates emissions anomalies for 1993-2000
calculated by using the observed monthly inundated area (Prigent et al. 2007). “LPJ” indicates
global CH4 emission anomalies simulated by LPJ (natural ecosystem and rice agriculture) for
scenario SC2 listed on Spahni et al. 2011. “update of Bousquet et al. 2006 (constant OH)” refers to
global wetland emission anomalies derived from long-term atmospheric synthesis inversion
updated from Bousquet et al. (2006). CAM-Chem_a refers to the reduced (by a factor of 0.64)
wetland emissions used in CAM-Chem (please see Table 1 for the differences between CAM-Chem
and CAM-Chem_a). TransCom refers to emission anomalies derived from the combined wetland
and rice paddies emissions. Methane emissions in Ringeval et al. (2010) were estimated using the
ORCHIDEE global vegetation model with a process-based wetland CH4 emission model. The
wetland area was prescribed to the observed monthly inundated area (Prigent et al. 2007) in
Ringeval et al. (2010). Please note that in this figure, “LPJ variable source area”, “LPJ”, and
“update of Bousquet et al. 2006 (constant OH)” data were obtained from Spahni et al. 2011. The

mean anomalies over 1993-2000 were adjusted to zero for the all data plotted on this graph.

Methane fluxes from wetlands but for the models that participated in WETCHIMP
(Melton et al. 2013; Wania et al. 2013). Each model used a different wetland extent
to estimate methane emissions (see Table 1 in Melton et al. 2013 for wetland
determination scheme in each model). LPJ-WSL prescribed wetland area from
monthly inundation dataset (Prigent et al. 2007, Papa et al. 2010). DLEM_norice
prescribed the maximum wetland area from the inundation dataset with simulated
intra-annual dynamics. SDVGM used the internal hydrological model to determine
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wetland locations. All other models parameterized wetland areas based on
inundation dataset or land cover dataset that produced different inter-annual and
intra-annual variability in wetland area. CAM-Chem and CAM-Chem_a used wetland
emissions simulated by CLM4Me', which is different from CLM4Me. For the
differences, please refer to Meng et al. (2012). Please also refer to Melton et al.
(2013) for detailed description of each model (SDGVM, LPJ-WSL, Orchidee, LPJ-
Bern_norice, DLEM_norice, CLM4Me).
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Growth rate:

In the model simulations of atmospheric
concentration, the annual growth rate for 1993-2000
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Model simulations vs. Observations (Dlugokencky et al. 2005)
for atmospheric concentrations. The climatological monthly
mean was removed to focus on inter-annual variability in
atmospheric CH, concentration at these stations. The
observations and model show the change in the slope of the
methane after 2000.

and 2001-2004 is 6.9 ppb/yr and -4.9 ppb/yr. The
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n rate for the wetland portion is 4.0 ppb/yr and
ob/yr for 1993-2000 and 2001-2004, respectively,
ne wetland methane growth rate changes in the

are a very large contributor to changes in the

methane growth rate.

In our model this is due partly to inundation extent
changes, derived from satellite, and partly from
changes in hetereotrophic respiration, which are
model derived. Our model tends to have a stronger
tropical methane source than other models, which
makes our model simulations of the growth rate
changes more sensitive to wetland methane than
previous studies.



