Progress towards development of a variably saturated subsurface model for CLM

Gautam Bisht^a (gbisht@lbl.gov) and William J. Riley^a

^αEarth Sciences Division, Lawrence Berkeley National Laboratory.

EARTH SCIENCES DIVISION

- Groundwater, which accounts for 30% of freshwater reserves globally, is a vital source for human water supply.
- Climate change is expected to impact the quality and quantity of groundwater in the future.
- Numerous numerical studies have shown impacts of near-surface soil moisture dynamics on several key Earth system processes.
- Despite the obvious need to accurately represent soil moisture dynamics, the current version of the Community Land Model (CLM) employs a non-unified treatment of hydrologic processes in the subsurface.

Schematic representation

VARIABLY SATURATED FLOW MODEL

The governing equation for flow through porous media is given by

$$\frac{\partial(\phi s_{w}\rho)}{\partial t} = -\nabla \cdot (\rho \boldsymbol{q}) + Q \tag{1}$$

and

$$\mathbf{q} = -\frac{kk_r}{\mu}\nabla(P + \rho gz) \tag{2}$$

where ϕ is the soil porosity [-], s_w is saturation [-], ρ is water density [kg m⁻³], \boldsymbol{q} is Darcy flux [m s⁻¹], Q is the general source/sink term of water [kg m⁻³ s⁻¹], k is intrinsic permeability [m 2], k_r is relative permeability [-], μ is viscosity of water [Pa s], P is pressure [Pa], g is the acceleration due to gravity [m s⁻²], and z is the elevation [m]. In order to close the system, we choose van Genuchten [1980] and Mualem [1976] constitutive relationships.

The PDE of groundwater flow (Eq 1) can be rewritten as a system of two Differential Algebraic Equations (DAEs):

$$f_P \equiv \frac{\partial m}{\partial t} + \nabla \cdot (\rho \mathbf{q}) - Q = 0 \text{ in } \Omega \times [0, T]$$
 (3a)

$$f_m \equiv m - (\phi s_w \rho) = 0$$
 (3b)

NUMERICAL SOLUTION

- ▶ Method of lines (MOL) is employed for spatial discretized of the DAE system.
- ▶ Variable-order, variable coefficient Backward Differential Formula is used to integrate the system in time.
- ▶ The DAE system is assembled using multi-physics capabilities in PETSc, while temporal integration is performed using SUNDIALS.
- Advantage of using PETSc and SUDIALS is that only six new subroutines are required:
- Two subroutines for residual calculations, and
- Four subroutines for jacobian computation.

Schematic representing numerical solution of DAE

RESULTS: INFILTRATION IN A VERY DRY SOIL

- Evolution of a wetting front within a dry 1 [m] deep soil column as reported in Celia et al. (1990) is simulated.
- Soils: $K_{sat} = 0.00922$ [cm s⁻¹]; $\theta_r = 0.102$ $\theta_s = 0.368$ $\alpha = 0.0335 \, [\text{cm}^{-1}]$
- Conditions
- P(z, t = 0) = -10[m]
- BC: P(z = 0, t) = -0.75[m]
- ▶ VSFM captures the sharp wetting profile at t = 24 [hr] and agrees with results reported in Celia et al. (1990).

Figure 3: Evolution of wetting front

RESULTS: TRANSIENT FLOW IN LAYERED SOILS

- Evolution of pressure profile between two steady state conditions for layered soils is studied.
- $K_{s,top-soil}/K_{s,bot-soi}=10$
- Top boundary conditions
- Wetting: Top flux 2.5×10^{-6} [m s⁻¹]
- Drying: Top flux 2.8×10^{-8} [m s⁻¹]
- ► The top soil layer, with higher hydraulic conductivity, responds quickly to change in top boundary condition as compared to bottom soil layer.
- ▶ VSFM results agrees with PFLOTRAN simulations.

RESULTS: WATER TABLE DYNAMICS

- This numerical experiment demonstrates the unified treatment of saturated and unsaturated in VSFM.
- Soils are same as in Celia et al. (1990).
- Conditions
- IC: Hydrostatic condition with water table at 0.5 [m]
- BC: Top flux = 2.5×10^{-5} [m s⁻¹]
- The simulated steady state water table depth at t = 1[d] is 0.7 [m], which agrees with PFLOTRAN results.

Figure 5: Transient water table dynamics

VSFM's extension.

FUTURE WORK

Global offline CLM simulations are planned with default subsurface model and newly implemented variably saturated Richards equation to investigate the impact on surface—subsurface processes with a unified treatment of vadose and pheratic zone.

- ▶ We plan to extend the current VSFM by coupling it with a hydraulic root distribution model to investigate plant water uptake for deep rooted forrest systems.
- Lastly, we plan to extend 1D subsurface flow model to be quasi-3D by implementing lateral fluxes as source/sink terms within 1D solution of the variably saturated Richards equation.

REFERENCES

Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative numerical solution for the unsaturated Bow equation, Water Resour. Res., 26, 1483–1496, 1990

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research 12 513-522.

van Genuchten, M.Th. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal 44 (5): 892-898.