

# Deep Convection Modifications for Gustiness, Entrainment and Timescale

Richard Neale, Cecile Hannay, Julio Bacmeister and John Truesdale National Center for Atmospheric Research



## Objective and Approach

#### Overview

- Surface fluxes due to sub-grid scale surface wind variations within the boundary layer are implicitly calculated as part of the surface flux parameterization (Fig. 1a)
- However, CAM does not currently parameterize sub-grid scale downdraft effects at the surface including *sub-grid scale convective gustiness* and its impact on surface fluxes (Fig. 1b)
- This could have important impacts in the convecting tropics where mean wind speeds are low
- Latent heat fluxes are low in the tropics in CAM (Fig 2.) and are often co-located with low rainfall (Fig 3)

#### Methodology

- Gustiness is calculated following a simple empirical relationship with convective precipitation (derived from the TOGA-COARE experiment in Redelsperger et al., 2000, Fig 1c)
- Sub-grid scale gustiness is applied to the surface latent heat flux calculation



## Results

#### 1 deg (ne30) simulations (AMIP)

- The flux modifications were applied in version v0.2 of the ACME model
- JJA has the largest response, where enhanced fluxes (Fig. 4) shift the Monsoon precipitation center of action to the East (Fig. 5). This improves existing biases
- East Pacific ITCZ biases are moderately degraded.

#### 0.25 deg (ne120) simulations (AMIP)

- Preliminary results with short ne120 simulations show similar effects to the ne30 simulations
- Fluxes are enhanced in the tropics and improvements are made to the Monsoon precipitation hole (Fig. 7) which is probably the most concerning atmospheric bias in ne120 simulations (Fig 6.).
- The number of the most intense North Pacific hurricanes is reduced with gustiness included (Fig. 8) compared to the excessive number of strong hurricanes produced in CAM5 (Fig. 9)





## Further Proposed Convection Modifications

#### **Overview**

 Approaches follow the work of Bechtold et al. (2008)

#### **Dynamic Timescale**

- Currently set to a constant
- Modified based on implied depth of convection and buoyancy-derived vertical velocity
- Longer timescale for deep convection and shorter timescale for shallow.

### **Dynamic entrainment**

- Currently set to a constant
- Stronger entrainment in a dry atmosphere (unorganized)
- Weaker entrainment in a moist atmosphere(organized)



**Dynamic Timescale** 



**Dynamic Entrainment** 

rneale@ucar.edu